Searching for Dark Photon Dark Matter with Radio Telescopes

Haipeng An (Tsinghua University)

第二届地下和空间粒子物理与宇宙物理前沿问题 研讨会

2023.5.7-12

杭州市,千岛湖

In collaboration with Xingyao Chen, Shuailiang Ge, Wen-Qing Guo, Xiaoyuan Huang, Jia Liu, Zheming Liu, Zhiyao Lu , Yan Luo

Ultralight dark photon DM

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{\kappa}{2}F_{\mu\nu}V^{\mu\nu} - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2V_\mu V^\mu + eA_\mu J^\mu$$

• Dark photon can decay through the three-photon channel and neutrino channel. Both are highly suppressed!

$$\Gamma_{V\to 3\gamma} \sim \frac{\kappa^2 m_V^9}{m_e^8}$$
$$\Gamma_{V\to\nu\nu} \sim \frac{\kappa^2 m_V^5}{m_Z^4}$$

Photon Dark Photon Oscillation

 V_{μ} and A_{μ} are in mass eigenstate.

The field configuration

•
$$\mathbf{E}_D(t, \mathbf{x}) = \mathbf{E}_D^{(0)} \cos(\omega_D t - \mathbf{k}_D \cdot \mathbf{x})$$

 $\omega_D \approx m_V + \frac{\mathbf{k}_D^2}{2m_V}$

$$\frac{k_D}{m_V} \approx v_D \sim 10^{-3}$$

$$\lambda_D \sim \frac{2\pi}{k_D} \approx \frac{2\pi}{m_V v_D} \approx 10^3 \times \frac{2\pi}{m_V}$$

Photon Dark Photon Oscillation

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2 V_\mu V^\mu + eA_\mu J^\mu - \kappa eV_\mu J^\mu$$

 V_{μ} and A_{μ} are in mass eigenstate.

- In the vacuum, V cannot be converted into A, no interaction
- In the plasma, (1) a mixing between V and A is generated.
 (2) a mass for A is also generated.

Photon Dark Photon Oscillation

• When $\omega_p = m_V$, photon and dark photon resonantly convert into each other.

Photon dark photon oscillation

If v_r =0 the DM stays at the resonance region forever.

Searching for ultralight DM with radio telescopes $\frac{4\pi\alpha n_e}{2}$

- For dark photon:
 - $\omega^2 k^2 = m_V^2$
- For photon in plasma:
 - $\omega^2-k^2=\omega_p^2$
- We need plasma.

Dark photon dark matter converted at the Sun's atmosphere

- Resonant conversion
 - $\omega_p = m_V$
- Inside the dark matter halo
 - $v_{DM} \sim 10^{-3}$
- The frequency of the converted photon $\omega \approx m_V$ with the dispersion $\sim 10^{-6}$.
- The signal is a sharp peak in the solar spectrum

Absorption of the converted photon during propagation

• Inverse bremsstrahlung absorption

Compton scattering can shift the frequency of the converted photon.

•
$$\Gamma_{att} = \Gamma_{inv} + \Gamma_{com}$$

Searching for the converted photon with radio telescopes

_		SEF	$^{\rm PD}$ $^{\rm OPD}$ $^{\rm OP}$	$T_{\rm sys} + T_{\odot}^{\rm nos}$
•	ne minimal detectable flux	$S_{\min} = \frac{1}{\eta_s \sqrt{n_{\mathrm{pol}}}}$	$\frac{1}{ \mathcal{B} t_{obs}} \text{SEFD} = 2\kappa_B - \frac{1}{ \mathcal{B} t_{obs}}$	$A_{\rm eff}$

Name	f [MHz]	$B_{\rm res}~[{ m kHz}]$	$\langle T_{\rm sys} \rangle$ [K]	$\left \langle A_{\mathrm{eff}} ight angle \left[\mathrm{m}^{2} ight] ight.$
SKA1-Low	(50, 350)	1	680	$2.2 imes 10^5$
SKA1-Mid B1	(350, 1050)	3.9	28	$2.7 imes 10^4$
SKA1-Mid B2	(950, 1760)	3.9	20	$3.5 imes 10^4$
LOFAR	(10, 80)	195	$28,\!110$	$1,\!830$
LOFAR	(120, 240)	195	1,770	$1,\!530$

West Australia and south Africa

Europe

Searching for DPDM with radio telescopes

HA, F.P. Huang, J.Liu, W.Xue, Phys.Rev.Lett. 126 (2021) 181102

Searching for DPDM in LOFAR

• We obtain LOFAR real data $f \sim 30 - 80$ MHz in total of 51 minute observation.

HA, Xingyao Chen, Shuailiang Ge, Jia Liu, Yan Luo, 2301.03622

For dark photon dark matter with smaller mass

- Because of the ionosphere, no terrestrial telescopes can cover f < 10 MHz.
- Go to outer space.

Plasma in solar wind

• Free electrons between Earth and Sun

For dark photon dark matter with even smaller mass

Work in progress with Jia Liu, Shuailiang Ge and Zheming Liu

- STEREO A/B
- Parker Solar Probe

Using solar probes to search for DPDM HA, Shuailiang Ge, Jia Liu and Zheming Liu, work in progress

Outlook: Hongmeng Project

Satellite array around the moon may give us the perfect opportunity to search for kHz-MHz frequency DPDM.

Dark photon in plasma

What we really need are free electrons!

Searching for dark photon dark matter directly with radio telescopes

• Large scale radio telescopes

Searching for dark photon dark matter directly with radio telescopes

• The dark photon dark matter has an interaction with the electric current, $\kappa e V_{\mu} J^{\mu}$ (although suppressed)

Dish antennas

• For dish antennas, the oscillation of the dark photon field induces the oscillation of the electrons in the reflector plate, and produces EM waves, which can be detected by the feed.

Dish antennas

• The size of the feed $\sim \lambda$

Dipole antennas

- Usually $\ell \leq \frac{\lambda}{2}$
- For photon, $\lambda = \frac{1}{f}$

• For dark photon,
$$\lambda_D = \frac{1}{f \times v_D} \approx 10^3 \lambda$$

• Equivalent electric signal:

$$\begin{split} E_{\rm EM}^{\rm eqv} &= \kappa E_D^{(0)} \cos(2\pi f t) \\ I_{\rm dipole}^{\rm eqv} &= \mathcal{C} \kappa^2 \rho_{\rm DM} \longrightarrow 0.4 \, {\rm GeV/cm^3} \end{split}$$

Order one parameter, determined by the detailed shape of the antenna

Antenna arrays

- $\lambda_D \sim 10^3 \lambda$
 - $\lambda_D \approx 4 \text{ km}$ for f = 70 MHz
 - $\lambda_D \approx 150 \text{m}$ for f = 2 GHz
- Interferometry techniques can be used.
- Correlation suppressed when the distance of two antennas is larger than λ_D .

$$\mathcal{S}_{mn} = \exp(-m_{A'}^2 \sigma_v^2 d_{mn}^2/4)$$

Limits from antenna arrays

• The signal is a peak,

 $f_{\rm signal} = m_V / 2\pi$ $\Delta f_{\rm signal} \approx 10^{-6} f$

• Minimum detectable spectral flux

$$S_{\min} = rac{\text{SEFD}}{\eta_s \sqrt{n_{\text{pol}} \mathcal{B} t_{\text{obs}}}} \qquad \qquad \text{SEFD} = rac{2k_B T_{\text{sys}}}{A_{\text{eff}}}$$

• We require $I_{array}^{eqv}/B > S_{min}$ to calculate the sensitivities of the antenna arrays.

FAST data

- 1–1.5 GHz, Band width = 7.63 kHz, data observed on Dec 14, 2020.
- The signal is constant, we remove data with large variation in time.

FAST data

• Spectrum after data cleasing

FAST data

• We calculate the uncertainties from the fluctuations of the data.

Constraint FAST data

Constraint FAST data

Constraint FAST data

Direct detection of dark photon dark matter with radio telescopes

HA, S Ge, W-Q Guo, X Huang, Jia Liu, Z Lu, Phys. Rev. Lett. 130 (2023) 181001

Our own prototype detector

• For parabolic mirror, it is better for the detector to be around 2F.

With Jia Liu, Qiang Yuan, Quan Guo, and Xiaoxing Yang

Summary

• We convert all photon detectors to dark photon detectors.

Existence of DM at all scales

Searching for Dark Matter

Searching for GeV-TeV DM

Searching for GeV-TeV DM

Searching for GeV-TeV DM

Photon Dark Photon Oscillation

• Projecting onto the transverse modes

• One to one transition matrix element

$$\mathcal{M}_{V_T \to A_T} = -\kappa \omega_p^2 \epsilon_A \cdot \epsilon_V$$

Polarization vectors