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Ø Cosmic birefringence is a parity-violating phenomenon, which might 
indicate the new physics beyond the standard cosmology (𝚲CDM). 

Ø Traditional explanation of CB involves an axion or ALP coupled to the EM 
tensor via a CS coupling 

Introduction to Cosmic Birefringence

Ø The axion can be dark matter or dark energy, which act as a 
“birefringence material” filling in our Universe.

Cosmic Birefringence
The Universe filled with a “birefringent material”

• If the Universe is filled with a pseudoscalar field (e.g., an axion field) coupled 
to the electromagnetic tensor via a Chern-Simons coupling:

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

Ni (1977); Turner & Widrow (1988)
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This “axion” field can be  
dark matter  

or dark energy!

Ni (1977); Turner & Widrow (1988)
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Introduction to Cosmic Birefringence

Ø The EOM is modified to 

Ni (1977); Turner & Widrow (1988)
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hand, it is clear from Eqs. (2.30) that growth in the mag-
netic flux requires p„,to be changing rapidly (i.e.,
y »—1). On the other hand, we want fields to exit the
horizon during PI and reenter the horizon during the RD
or MD phase and this requires that during PI, H ~p,'„is
not changing too rapidly (i.e., y & ——,'). Finally, there is
the fact that the RF terms are negligible for T&10
GeV. The end result, when all of the various constraints
are taken into account, is that the energy density in
large-scale magnetic fields arising from the RF terms is
small.

III. SCALAR AND AXION ELECTRODYNAMICS

In this section we discuss preliminary work on models
in which the electromagnetic field is coupled to other
nonconformal, matter fields. In particular we consider a
massless, charged scalar field, minimally coupled to both
gravity and the electromagnetic fields. Scalar electro-
dynamics in very special cosmological models has been
considered by a number of authors. Ford has studied
the stability of a charged scalar field in de Sitter space to
determine if an instability of the coupled system might
render de Sitter space unstable, and perhaps provide a
mechanism for canceling off any cosmological constant.
Here our hope is that the energy density in the minimally
coupled scalar field which in decreasing only as a will
couple into A " resulting in similar superadiabatic
amplification. We also consider the axion, which,
through the anomaly couples to E B. Thus the axion
field, too, could provide a source term for large-scale
magnetic fields.
The Lagrangian for massless scalar electrodynamics is

then be written as
Ak-2ea'k'I pk ~

(1+ek '4k), (3.5)

where in the above expression, we have dropped the vec-
tor index i. Neglecting the back reaction of the elec-
tromagnetic field on the scalar field, for

~
kri

~
&&1 we

have
~ pk ~

k =Ho, and it follows that

Ak -2ea kHO(1+ek A„}. (3.6}

We first study this equation to lowest order in e though
we will show in a moment that such an analysis is funda-
mentally Aawed. Keeping only the lowest-order term in
e, the current term, one finds that in dS, A& ~ lna+const'
and in RH, AI, ~a . This would imply that during
dS magnetic flux undergoes slow growth [pa /p„,
oc(lna) a ] and that during RH it undergoes rapid
growth: pa /p„,~ a . One might suppose that this indi-
cates an efficient transfer of energy from the scalar field
to the electromagnetic field during RH. However, if one
takes into account the second-order term in e, then the
solution is apparently Ak ———1/ek +(decaying terms).
We do not claim that this is indeed the correct solution
or even that it displays the gross features of the correct
solution. The appearance of the coupling constant in the
denominator suggests that nonperturbative effects are im-
portant and that a perturbative analysis may be Qawed.
We do believe that the scalar electrodynamic system is
potentially very interesting and we are currently studying
the full coupled equations of motion.
Next consider axion electrodynamics. For energies

well below the Peccei-Quinn symmetry-breaking scale f„
the effective Lagrangian for axion electrodynamics is

D„Q(D"$—)"—,'F„„F"',— (3.1) ,' d„88"8 ,—'F—„„F"'+g—,—8F„F"", (3.7)

(I}+2—P—V P=—g (2ieA;8;P+e A, A, P),
l

(3.3)

where, as before, we work in the Coulomb gauge,
Ao ——8; A; =0. The source term on the right-hand side of
Eq. (3.2) contains two terms; a term involving only the P
field and a charge density term which gives an effective
mass to the photon.
The coupled equations are difficult to solve as they are

nonlinear. We are interested in the evolution of a partic-
ular Fourier mode AI, of the electromagnetic field. The
kth Fourier component of a term such as P'8;P is

f d x e'"*P*d;/=i fd q q;Pk P . (3.4)
As a first approximation we replace this expression by

The equation of motion, for Ak with
~
kg

~
&&1 can

where for simplicity we are neglecting the P field's cou-
pling to other fields. We note that it is not necessary that
the ((} field be exactly massless; only that its mass be «H
during the epochs of interest (p„,& TaH ). The complex
scalar field P couples to electromagnetism through the
usual gauge covariant derivative, D„=B„ieA„—
The equations of motion in an FRW background are

A; —V A;=iea (Qr};P"—P'8;P)—2e a A;
~ P ~, (3.2)

where g, is a coupling constant of the order a, and the
vacuum angle 8=/, /f, (P, =axion field). The equations
of motion are

a E+VXB=g,(8B+V8XE),a2 Bg
1 8 a B+VXE=O,a~ Bg

8+2—0+k 0+g, a E 8=0 .a

(3.8)

(3.9)

(3.10)

The axion field, as other scalar fields, will be excited in de
Sitter space, giving rise to (8 )-(Ho/f, ), which in
principle can act as a source term for the electromagnetic
field A". The coupled equations are difficult to solve and
at present we have not completed our analysis. We note
however that the model is similar to the RF models.
The current on the right-hand side of Eq. (3.8) which
could potentially be a source term for large-scale magnet-
ic fields, depends on derivatives of the axion field and we
must look for models in which 0 is rapidly changing.

IV. SUMMARY
The origin of the primeval magnetic flux required to

seed the magnetic fields which are so ubiquitous and so
important in the Universe today is still uncertain. A pri-
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Phase velocities of right- 

and left-handed states 

are slightly different!

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

Ø Different phase velocities for RH(+) and LH(-) photon polarizations

Ø CB rotation angle

Appendix A: Formulae

� = �2ga

Z tobs
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dt✓̇ = 2ga [✓(te)� ✓(to)] (A1)
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Cosmic Birefringence in the CMB

Lue, Wang & Kamionkowski (1999); Feng et al. (2005); Liu et al (2006); Zhao et al. (2015)
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During the long travel from the last scattering surface to observer, 
parity-violating physics, e.g., axion-like particles (ALPs), rotate CMB 
linear polarisation by

CMB systematics and calibration focus workshop, Dec. 03, 2020, Zoom 
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E-B mixing by rotation of the plane of linear 
polarisation
• Observed E- and B-mode polarisation, Elo and 

Blo, are related to those before rotation as

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)
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E-B mixing by rotation of the plane of linear 
polarisation
• Observed E- and B-mode polarisation, Elo and 

Blo, are related to those before rotation as

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)

28

• which gives
El,Bl

Elo,Blo

Last Scattering Surface
Scattering generates polarization!
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Ø E-B mixing by rotation of the linear 
polarization plane in CMB

E-B mixing by rotation of the plane of linear 
polarisation
• Observed E- and B-mode polarisation, Elo and 

Blo, are related to those before rotation as

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)
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polarisation
• Observed E- and B-mode polarisation, Elo and 

Blo, are related to those before rotation as
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Searching for the birefringence
• Computing observed difference between EE and BB spectra, 


• We find
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BB

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)
Zhao et al. (2015)

EB is generated 
by the difference 
between EE and 

BB spectra.

Ø <E*B> correlation measures 𝛃
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Cosmic Birefringence in the CMB

Minami et al. (2019); Minami & Komatsu (2020); Diego-Palazuelos et al. (2022); Eskilt & Komatsu(2022)

Ø Problem: miscalibration of polarization angles 𝛂è Only 𝛂+𝛃 measured
LiteBIRDSimultaneous determination of the cosmic birefringence 

and miscalibrated polarisation angles (1 min slide)

2020/12/03 CMB systematics and calibration focus workshop, Dec. 03, 2020, Zoom 1

𝛼
Cosmic birefringence

OR

➢ With miscalibration, we can only 
measure the sum, 𝛼 + 𝛽

➢ We develop a method to determine 
𝛼 with the Galactic foreground and 
break the degeneracy!

𝛼Miscalibration

Let’s apply this method to 
other future and existing experiments!

Ø Develop new method to determine 
𝛂 with Galactic foreground and 
break the degeneracy 

Cosmic Birefringence from the Planck Data Release 4
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We search for the signature of parity-violating physics in the cosmic microwave background, called
cosmic birefringence, using the Planck data release 4. We initially find a birefringence angle of
β ¼ 0.30°" 0.11° (68% C.L.) for nearly full-sky data. The values of β decrease as we enlarge the
Galactic mask, which can be interpreted as the effect of polarized foreground emission. Two independent
ways to model this effect are used to mitigate the systematic impact on β for different sky fractions. We
choose not to assign cosmological significance to the measured value of β until we improve our knowledge
of the foreground polarization.

DOI: 10.1103/PhysRevLett.128.091302

Introduction.—Dark matter and dark energy in the
Universe [1] may be a parity-violating pseudoscalar field,
ϕ, which changes sign under inversion of spatial coor-
dinates [2,3]. This field can couple to the electromagnetic
tensor Fμν and its dual tensor F̃μν via a Chern-Simons term
in the Lagrangian density, 1

4 gϕγϕFμνF̃μν [4,5], which
makes the phase velocities of right- and left-handed
states of photons different; thus, the plane of linear
polarization rotates clockwise on the sky by an angle
β ¼ − 1

2 gϕγ
R
dt∂ϕ=∂t, where gϕγ is the coupling constant

[6–9]. The space filled with ϕ therefore behaves as if it
were a birefringent material. For this reason, such an
effect is often called “cosmic birefringence.”

Linear polarization of the cosmic microwave background
(CMB) photons is sensitive to β [10]. The polarization
pattern on the sky can be decomposed into parity-even E
modes and parity-odd B modes [11,12]. The correlation
functions of polarization fields (or the power spectra Cl in
spherical harmonics space with angular wave number l),
contain two parity-even EE and BB autospectra, and one
parity-odd EB cross-spectrum. Cosmic birefringence
then yields CEB;o

l ¼ 1
2 sinð4βÞðC

EE
l − CBB

l Þ, even when
the intrinsic polarization contains no EB [10,13–16].
Here, the superscript “o” denotes the observed value,
whereas the EE and BB power spectra on the right side
are the ones before undergoing the cosmic birefringence.
Recently, a weak signal of β ¼ 0.35°" 0.14° (68% C.L.)

was reported with a statistical significance of 2.4σ [17],
using analysis of CEB

l data from the European Space
Agency Planck mission high-frequency instrument (HFI)
public release 3 (PR3) [18]. References [19–26] discuss
possible cosmological implications of this particular meas-
urement, and Refs. [27–33] give previous constraints on β.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.
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Motivation 

Important Question: 

Is there any alternative explanation to the 
nonzero CB angle beyond the axion or ALP?
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Ø Lagrangian

Cosmic Birefringence from a Fermion Current

Ø We are working in the flat FRW universe with metric ds2 = -dt2 + R2(t) dx2,  
and in the background with nonzero homogeneous fermion current 
density J𝜇=(Jt , J),  where

Ø Transform into the conformal time d𝜂 = dt/R, so ds2 = R2(𝜂) (-d𝜂2 + dx2)

C.Q. Geng, S.H. Ho, J.N. Ng, JCAP 09(2007)010; R.P. Zhou, DH, C.Q. Geng, arXiv: 2302.11140

results. In order to clarify the possible origin of the mistake, we first rederive the general

formulae for the cosmic birefringence angle �↵ for an arbitrary fermionic current. We then

use the obtained expression of �↵ to study two specific models in which the fermions are

assumed to be the left-handed electron-type neutrinos and the DM particles, respectively.

For the neutrino case, we would like to update the numerical results in Ref. [39] with the cor-

rect analytical formula of �↵. As for the DM candidates, by noticing that it is the number

density di↵erence between particles and anti-particles that induces the photon birefringence,

we are led to consider the asymmetric DM (ADM) scenario [41–44] (For reviews of ADM

models, see Refs [45, 46] and references therein), in which all the observed DM density in

the Universe is solely composed of fermionic DM particles without its anti-particle coun-

terparts. Instead of specifying the concrete mechanism for the ADM production, we would

like to explore the phenomenology of this model at two benchmark points with the ADM

mass to be M� = 5 GeV and 5 keV. The former case is the natural ADM mass value if

the DM and baryon relics are generated via the same mechanism in order to explain their

cosmological mass density ratio, while the latter is a legitimate warm DM candidate [47]

which can help us to understand several small-scale structure problems [48]. We also take

into account the experimental constraints on these two ADM cases, including the Planck

CMB power spectra and the DM direct detection (DD) bounds.

The paper is organized as follows. In Sec. II, we rederive the general formulae for the

cosmic birefringence angle �↵ sourced by the Chern-Simons-like coupling of an arbitrary

fermionic current to photons. Secs. III and IV are dedicated to the phenomenological studies

by identifying the fermions in the above current as the left-handed electron neutrinos and

ADM particles, respectively. Finally, we summarize in Sec. V.

II. GENERAL DISCUSSION OF COSMIC BIREFRINGENCE FROM A FERMION

CURRENT

In this section, we shall derive the formula of the isotropic birefringence angle induced

by the coupling of a general fermion current Jµ to the photon Chern-Simons term [39, 40].

Let us begin our discussion by writing down the following Lagrangian [39]

L = LEM + LCS = �
1

4

p
gFµ⌫F

µ⌫
�

1

2

p
g

�

M2
JµA⌫F̃

µ⌫
, (1)

3

Break parity, 
preserve CP

where g ⌘ �det(gµ⌫) with gµ⌫ as the metric tensor of the spacetime, and Aµ denotes the

electromagnetic field with its field strength as Fµ⌫ = @µA⌫ �@⌫Aµ. We have also defined the

dual field strength tensor as

F̃
µ⌫

⌘
1

2
✏
µ⌫⇢�

F⇢� , (2)

in which ✏ is the Levi-Civita tensor defined as ✏µ⌫⇢� ⌘ g
�1/2

e
µ⌫⇢� with e

µ⌫⇢� as the antisym-

metric symbol normalized to e0123 = 1. Since the coupling of Jµ to the photon Chern-Simons

term is of six mass dimensions, we have introduced M as the cuto↵ scale to balance the di-

mension with � to be a constant of O(1). Note that the term LCS is not invariant under the

electromagnetic U(1) gauge transformation. However, as shown in Refs. [39, 40], one could

resort to the Stückelberg mechanism or the anti-symmetric Kalb-Ramond field in order to

maintain the gauge invariance.

It is well-known that our universe is flat, homogeneous and isotropic, so that it can be

described by the following Friedman-Lamâıtre-Robertson-Walker metric

ds
2 = �dt

2 +R
2(t)dx2

, (3)

where t is the physical proper time while x denotes the spatial three-dimensional comoving

coordinates with R(t) being the scale factor. In this coordinate, the fermionic four-current is

defined as Jµ = (Jt ,J), where J is the fermion flux and Jt is the number density di↵erence

between fermions and anti-fermions Jt = �n = n � n̄, with n(n̄) the number density of

(anti-)fermions. In the present work, we only focus on the isotropic birefringence generated

by Jt, and ignore the sub-leading anisotropic e↵ects caused by the flux current J. Thus, we

fix J = 0 for simplicity.

We shall follow the procedure given in Refs. [1, 2] to derive the birefringence angle induced

by the current Jµ. Firstly, we need to transform the coordinate metric into the following

form

ds
2 = R

2(⌘)(�d⌘
2 + dx2) , (4)

where ⌘ is the conformal time with d⌘ = dt/R. Also, the fermion density is transformed

into J⌘ = R(⌘)Jt = R(⌘)�n while J keeps vanishing. By di↵erentiating the Lagrangian in

Eq. (1) with respect to Aµ, we can obtain the photon field equation

rµF
µ⌫ =

�

M2
JµF̃

µ⌫
, (5)

4

Ø Photon Field Equation + Bianchi Identity

where g ⌘ �det(gµ⌫) with gµ⌫ as the metric tensor of the spacetime, and Aµ denotes the

electromagnetic field with its field strength as Fµ⌫ = @µA⌫ �@⌫Aµ. We have also defined the

dual field strength tensor as

F̃
µ⌫

⌘
1

2
✏
µ⌫⇢�

F⇢� , (2)

in which ✏ is the Levi-Civita tensor defined as ✏µ⌫⇢� ⌘ g
�1/2

e
µ⌫⇢� with e

µ⌫⇢� as the antisym-

metric symbol normalized to e0123 = 1. Since the coupling of Jµ to the photon Chern-Simons

term is of six mass dimensions, we have introduced M as the cuto↵ scale to balance the di-

mension with � to be a constant of O(1). Note that the term LCS is not invariant under the

electromagnetic U(1) gauge transformation. However, as shown in Refs. [39, 40], one could

resort to the Stückelberg mechanism or the anti-symmetric Kalb-Ramond field in order to

maintain the gauge invariance.

It is well-known that our universe is flat, homogeneous and isotropic, so that it can be

described by the following Friedman-Lamâıtre-Robertson-Walker metric

ds
2 = �dt

2 +R
2(t)dx2

, (3)

where t is the physical proper time while x denotes the spatial three-dimensional comoving

coordinates with R(t) being the scale factor. In this coordinate, the fermionic four-current is

defined as Jµ = (Jt ,J), where J is the fermion flux and Jt is the number density di↵erence

between fermions and anti-fermions Jt = �n = n � n̄, with n(n̄) the number density of

(anti-)fermions. In the present work, we only focus on the isotropic birefringence generated

by Jt, and ignore the sub-leading anisotropic e↵ects caused by the flux current J. Thus, we

fix J = 0 for simplicity.

We shall follow the procedure given in Refs. [1, 2] to derive the birefringence angle induced

by the current Jµ. Firstly, we need to transform the coordinate metric into the following

form

ds
2 = R

2(⌘)(�d⌘
2 + dx2) , (4)

where ⌘ is the conformal time with d⌘ = dt/R. Also, the fermion density is transformed

into J⌘ = R(⌘)Jt = R(⌘)�n while J keeps vanishing. By di↵erentiating the Lagrangian in

Eq. (1) with respect to Aµ, we can obtain the photon field equation

rµF
µ⌫ =

�

M2
JµF̃

µ⌫
, (5)

4

together with the Bianchi identities given by

rµF̃
µ⌫ = 0 . (6)

In order to proceed, we can represent F µ⌫ and its dual F̃ µ⌫ by the corresponding physical

electric and magnetic fields E and B as follows [49]

F
µ⌫ = R

�2

0

BBBBB@

0 Ex Ey Ez

�Ex 0 Bz �By

�Ey �Bz 0 Bx

�Ez By �Bx 0

1

CCCCCA
, F̃

µ⌫ = R
�2

0

BBBBB@

0 Bx By Bz

�Bx 0 �Ex Ey

�By Ez 0 �Ex

�Bz �Ey Ex 0

1

CCCCCA
. (7)

As a result, the field equations in Eqs. (5) and (6) can be written as

@

@⌘

�
R

2E
�
�r⇥

�
R

2B
�
=

�

M2
J⌘

�
R

2B
�
, r · E = 0 , (8)

and

@

@⌘

�
R

2B
�
+r⇥

�
R

2E
�
= 0 , r ·B = 0 , (9)

wherer· andr⇥ here denote the conventional di↵erential operators in the three-dimensional

Cartesian space. By combining the equations in Eqs. (8) and (9) so as to eliminate E, we

can obtain

@
2

@⌘2

�
R

2B
�
�r

2
�
R

2B
�
= �

�

M2
J⌘r⇥

�
R

2B
�
. (10)

Now we consider the monochromatic wave solution to Eq. (10) of the following form

R
2B(x, ⌘) = e

�ik·x
R

2B(⌘) , (11)

and assume that the wave propagates along the z axis so that k · x = kz. In addition, we

define the two independent transverse-polarized waves in terms of their circular polarizations

F± ⌘ R
2
B±(⌘) = R

2(Bx ± iBy) , (12)

which can simplify the wave equation in Eq. (10) into the following form

d
2
F±

d⌘2
+

✓
k
2
±

�kJ⌘

M2

◆
F± = 0 . (13)

By assuming that the fermion density J⌘ evolves very slowly over the photon propagation,

we can apply the WKB method to obtain the following approximated solution to Eq. (13)

F±(⌘) = exp

"
ik

Z ✓
1±

�

M2

J⌘

k

◆1/2

d⌘

#
. (14)

5

J𝜂 = R(𝜂)Jt = R(𝜂)𝛥n,         J = 0. 

where g ⌘ �det(gµ⌫) with gµ⌫ as the metric tensor of the spacetime, and Aµ denotes the

electromagnetic field with its field strength as Fµ⌫ = @µA⌫ �@⌫Aµ. We have also defined the

dual field strength tensor as

F̃
µ⌫

⌘
1

2
✏
µ⌫⇢�

F⇢� , (2)

in which ✏ is the Levi-Civita tensor defined as ✏µ⌫⇢� ⌘ g
�1/2

e
µ⌫⇢� with e

µ⌫⇢� as the antisym-

metric symbol normalized to e0123 = 1. Since the coupling of Jµ to the photon Chern-Simons

term is of six mass dimensions, we have introduced M as the cuto↵ scale to balance the di-

mension with � to be a constant of O(1). Note that the term LCS is not invariant under the

electromagnetic U(1) gauge transformation. However, as shown in Refs. [39, 40], one could

resort to the Stückelberg mechanism or the anti-symmetric Kalb-Ramond field in order to

maintain the gauge invariance.

It is well-known that our universe is flat, homogeneous and isotropic, so that it can be

described by the following Friedman-Lamâıtre-Robertson-Walker metric

ds
2 = �dt

2 +R
2(t)dx2

, (3)

where t is the physical proper time while x denotes the spatial three-dimensional comoving

coordinates with R(t) being the scale factor. In this coordinate, the fermionic four-current is

defined as Jµ = (Jt ,J), where J is the fermion flux and Jt is the number density di↵erence

between fermions and anti-fermions Jt = �n = n � n̄, with n(n̄) the number density of

(anti-)fermions. In the present work, we only focus on the isotropic birefringence generated

by Jt, and ignore the sub-leading anisotropic e↵ects caused by the flux current J. Thus, we

fix J = 0 for simplicity.

We shall follow the procedure given in Refs. [1, 2] to derive the birefringence angle induced

by the current Jµ. Firstly, we need to transform the coordinate metric into the following

form

ds
2 = R

2(⌘)(�d⌘
2 + dx2) , (4)

where ⌘ is the conformal time with d⌘ = dt/R. Also, the fermion density is transformed

into J⌘ = R(⌘)Jt = R(⌘)�n while J keeps vanishing. By di↵erentiating the Lagrangian in

Eq. (1) with respect to Aµ, we can obtain the photon field equation

rµF
µ⌫ =

�

M2
JµF̃

µ⌫
, (5)

4

,       J = 0. Fermion Asymmetry
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Ø Define E and B fields

Cosmic Birefringence from a Fermion Current

R.P. Zhou, DH, C.Q. Geng, arXiv: 2302.11140

Ø Modified Maxwell Equations

together with the Bianchi identities given by

rµF̃
µ⌫ = 0 . (6)

In order to proceed, we can represent F µ⌫ and its dual F̃ µ⌫ by the corresponding physical

electric and magnetic fields E and B as follows [49]

F
µ⌫ = R

�2

0

BBBBB@
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�Ez By �Bx 0

1

CCCCCA
, F̃

µ⌫ = R
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Ø Go to Fourier space and assume EM wave propagates alone z direction

Cosmic Birefringence from a Fermion Current

R.P. Zhou, DH, C.Q. Geng, arXiv: 2302.11140

Ø Define two circular polarizations

Ø WKB Solution:
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Standard Maxwell Theory
Warm up (2)
• To isolate a transverse wave, we require A0=0 and div(Ai)=0. Then, in vacuum,


• Go to Fourier space, choose the propagation direction of Ai to be in z-axis, 
and define right- and left-handed polarisation states as

14x1

x2

(A1, A2, 0)

~k
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• A+: Right-handed state


• A–: Left-handed state

Same dispersion relation for 

right- and left-handed states

(Bx, By, 0)

F+: Right-handed;

F-: Left-handed;
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Different phase velocities 
of RH and LH states 

Ø The plane of a linearly polarization rotates by an angle

Therefore, the solution to the original electromagnetic wave equation in Eq. (10) is given by

R
2
B±(z, ⌘) = e

�ikz
F±(⌘) = e

i�± , (15)

where the phase �± is defined as

�± = k(⌘ � z)±
�

2M2

Z
J⌘d⌘ �

�
2

8kM4

Z
J
2
⌘d⌘ +O(k�2) . (16)

As a result, the birefringence polarization rotation angle induced by the Chern-Simons-like

coupling LCS in Eq. (1) is given by

�↵ ⇡
1

2

�

M2

Z
J⌘d⌘ =

1

2

�

M2

Z
�n dt , (17)

where we have used the relations J⌘ = R(⌘)�n and d⌘ = dt/R in the last equality. Note

that the formula for the angle of the polarization plane rotation in Eq. (17) is di↵erent from

Eq. (10) in Ref. [39], in which there was an extra scale factor R in the denominator of the

integrand. Such a distinction can be traced back to the mistreatment of the current density

Jt = �n in deriving the wave equation in Eq. (8) and the subsequent calculations, in which

all quantities should defined in terms of conformal time so that J⌘ should be employed.

We would like to emphasize that, in deriving the general formula of the birefringence

angle �↵ in Eq. (17), we have not specified the origin of the fermionic current Jµ. In the

following two sections, we shall identify it as the current of left-handed electron neutrinos

and fermionic ADM particles, both of which are of phenomenological importance.

III. NEUTRINO CURRENT

In this section, we shall identify Jµ as the active left-handed electron neutrino current

as J
⌫e
µ = (⌫e)L�µ(⌫e)L in the SM. Such a case has already been explored in Refs. [39, 40].

However, as mentioned before, the improper dependence of the birefringence angle on the

scale factor R(t) given in Ref. [39] has made the analysis unreliable. Hence, here we would

like to update the result of the neutrino-current-induced cosmic birefringence. According to

our new �↵ formula in Eq. (17), the polarization angle rotation is given by

�↵ =
1

2

�

M2

Z
J
⌫e
⌘ d⌘ =

1

2

�

M2

Z
�n⌫edt , (18)

where �n⌫e ⌘ n⌫e � n⌫̄e is the density di↵erence between neutrinos and anti-neutrinos in

the coordinate defined in Eq. (3). Note that the electron neutrino asymmetry is usually

6

The effect accumulates 
over long distances!
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Ø Identify fermions in the current as electron neutrinos 𝛎e

CB from Neutrino Asymmetry
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where n� is the number density of photons, T⌫(�) is the temperature of neutrinos (photons),

and ⇠⌫e = µ⌫e/T⌫ is the degeneracy parameter with µ⌫e denoting the electron neutrino chem-

ical potential, respectively. Based on the standard cosmological evolution, the temperature

ratio between neutrinos and photons can be estimated as (T⌫/T�)3 = 4/11 for all neutrino
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Predicted by the entropy conservation, the temperature of photons after their decoupling

evolves as

T�R = T� 0R0 = T�DRD , (23)

where T�D (T� 0) and RD (R0) are the temperature and the scale factor at the time of

recombination (at present). By defining the redshift z as R/R0 ⌘ 1/(1 + z), the photon

temperature at any redshift is given by

T� = T� 0(1 + z). (24)
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Ø CB rotation angle

CB from Neutrino Asymmetry
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where zD ' 1090 denotes the redshift at the photon decoupling [53] and we have approx-

imated the cosmological evolution afterward as a flat and matter-dominant Universe with

the Hubble parameter given by

H(z) = H0(1 + z)3/2 , (27)

in which the Hubble parameter H0 and the CMB temperature T� 0 at present [53] are

H0 = 100h km s�1Mpc�1
' 2.1332⇥ 10�42

hGeV , T� 0 ' 2.7255K . (28)

with h ' 0.674 given by the Planck 2018 data.

Note that the angle rotated by the CMB photon polarization plane reported by Planck

PR4 is �↵ = 0.30� ± 0.11� = (5.24 ± 1.92) ⇥ 10�3 rad at 68% confidence level (CL) [7],

which updates the analysis based on the Planck PR3 data in Ref. [8]. Moreover, the elec-

tron neutrino degeneracy parameter ⇠⌫e reflecting the lepton asymmetry contained in ⌫e is

usually measured and constrained by the CMB and BBN observations. In particular, the

latest measurement of the primordial helium abundance in the metal poor galaxies by the

EMPRESS survey [54] has indicated the existence of an exceptionally large nonzero elec-

tron neutrino asymmetry ⇠⌫e = 0.05± 0.03 [54–56], which possibly hints to the new physics

beyond the SM. In the present work, we apply this latest value of ⇠⌫e to estimate the CMB

polarization rotation angle as follows
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. (29)

We also plot in Fig. 1 the relevant parameter space in the ⇠⌫e-�/M
2 plane, in which the solid

blue region can explain the CMB birefringence angle at 2� CL reported by Planck PR4

while the red shaded area is the 1� interval of the electron neutrino degeneracy parameter

measured by the latest EMPRESS survey.

IV. ASYMMETRIC DARK MATTER CURRENT

More and more astrophysical and cosmological evidences have shown the existence of the

DM in our Universe [57], but its nature is still a great mystery. It is intriguing that the DM
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the Hubble parameter given by
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in which the Hubble parameter H0 and the CMB temperature T� 0 at present [53] are
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hGeV , T� 0 ' 2.7255K . (28)

with h ' 0.674 given by the Planck 2018 data.

Note that the angle rotated by the CMB photon polarization plane reported by Planck

PR4 is �↵ = 0.30� ± 0.11� = (5.24 ± 1.92) ⇥ 10�3 rad at 68% confidence level (CL) [7],

which updates the analysis based on the Planck PR3 data in Ref. [8]. Moreover, the elec-

tron neutrino degeneracy parameter ⇠⌫e reflecting the lepton asymmetry contained in ⌫e is

usually measured and constrained by the CMB and BBN observations. In particular, the

latest measurement of the primordial helium abundance in the metal poor galaxies by the

EMPRESS survey [54] has indicated the existence of an exceptionally large nonzero elec-

tron neutrino asymmetry ⇠⌫e = 0.05+0.03
�0.02 [54–56], which possibly hints to the new physics

beyond the SM. In the present work, we apply this latest value of ⇠⌫e to estimate the CMB
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We also plot in Fig. 1 the relevant parameter space in the ⇠⌫e-�/M
2 plane, in which the solid

blue region can explain the CMB birefringence angle at 2� CL reported by Planck PR4

while the red shaded area is the 1� interval of the electron neutrino degeneracy parameter

measured by the latest EMPRESS survey.
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Ø Recently, by measuring the primordial helium 
abundance in the metal poor galaxies, the 
EMPRESS survey has found a tension with 
SM prediction, indicating a remarkably 
nonzero 𝛎e degeneracy parameter



2023/5/9 第二届地下和空间粒子物理与宇宙物理前沿问题研讨
会, 杭州 14

Ø Evidence for dark matter

CB from Asymmetric Dark Matter

l Rotation Curves of Spiral Galaxies l Gravitational Lensing

l CMB l Bullet Cluster
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Ø It is interesting to consider CB from a fermionic DM current

CB from Asymmetric Dark Matter

FIG. 1. The parameter space in the ⇠⌫e-�/M
2 plane, where the solid blue region explains the CMB

birefringence angle at 2� CL reported by Planck PR4, while the red shaded area represents the 1�

range of the electron neutrino asymmetry parameter ⇠⌫e measured by the EMPRESS survey with

the dotted line representing its central value.

particle can be related to other beyond-SM physics, like the cosmic birefringence measured

by Planck. In this section, we would like to interpret the birefringence angle in the CMB

data as induced by the fermionic DM current J�
µ = �̄�µ� through the e↵ective interaction

LCS in Eq. (1). As shown in the Sec. II, it is the number density excess of the DM particles

over anti-DM ones that sources the CMB polarization plane rotation in this setup. In the

present work, we do not specify the origin of such DM asymmetries, and assume that all the

DM density in the Universe is composed of the dark fermions without any corresponding

anti-fermions, i.e., n� = �n� = J
�
0 . Such a scenario is usually called the ADM model [41–

46, 58–60], in which, if the cosmological baryonic matter and DM densities originate from

the same mechanism, it could help to explain the observed cosmological density ratio of the

visible and dark matters when the ADM mass is about 5 times of the proton/neutron mass,

i.e., M� ⇡ 5 GeV.
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0 and J
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called the ADM model [41–46, 58–60], in which, if the cosmological baryonic matter and

DM densities originate from the same mechanism, it could help to explain the observed

cosmological density ratio of the visible and dark matters when the ADM mass is about 5

times of the proton/neutron mass, i.e., M� ⇡ 5 GeV.
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Asymmetric DM

Ø Many models for producing ADM has 
been proposed in the literature. 
Especially when M𝛘 ≃ 5 GeV, ADM 
can help explain the density ratio 
between visible and dark matters. 

S. Nussinov (1985); D.B. Kaplan (1992); 
D.E. Kaplan+(2009); K.M. Zurek(2014);

Ø Here we do not specify the ADM production mechanism and assume it 
can induce CB via its coupling with photon CS term.
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Ø Recall the CB rotation angle

CB from Asymmetric Dark Matter

Ø For ADM, 𝛥n𝛘 = n𝛘, and cosmological DM abundance is parametrized by                                 

Ø According to cosmological evolution,                            and 

Therefore, the solution to the original electromagnetic wave equation in Eq. (10) is given by

R
2
B±(z, ⌘) = e

�ikz
F±(⌘) = e

i�± , (15)

where the phase �± is defined as
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�

2M2

Z
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�
2

8kM4

Z
J
2
⌘d⌘ +O(k�2) . (16)

As a result, the birefringence polarization rotation angle induced by the Chern-Simons-like

coupling LCS in Eq. (1) is given by
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Z
�n dt , (17)

where we have used the relations J⌘ = R(⌘)�n and d⌘ = dt/R in the last equality. Note

that the formula for the angle of the polarization plane rotation in Eq. (17) is di↵erent from

Eq. (10) in Ref. [39], in which there was an extra scale factor R in the denominator of the

integrand. Such a distinction can be traced back to the mistreatment of the current density

Jt = �n in deriving the wave equation in Eq. (8) and the subsequent calculations, in which

all quantities should defined in terms of conformal time so that J⌘ should be employed.

We would like to emphasize that, in deriving the general formula of the birefringence

angle �↵ in Eq. (17), we have not specified the origin of the fermionic current Jµ. In the

following two sections, we shall identify it as the current of left-handed electron neutrinos

and fermionic ADM particles, both of which are of phenomenological importance.

III. NEUTRINO CURRENT

In this section, we shall identify Jµ as the active left-handed electron neutrino current

as J
⌫e
µ = (⌫e)L�µ(⌫e)L in the SM. Such a case has already been explored in Refs. [39, 40].

However, as mentioned before, the improper dependence of the birefringence angle on the

scale factor R(t) given in Ref. [39] has made the analysis unreliable. Hence, here we would

like to update the result of the neutrino-current-induced cosmic birefringence. According to

our new �↵ formula in Eq. (17), the polarization angle rotation is given by
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where �n⌫e ⌘ n⌫e � n⌫̄e is the density di↵erence between neutrinos and anti-neutrinos in

the coordinate defined in Eq. (3). Note that the electron neutrino asymmetry is usually
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A. ADM Explanation of the Cosmic Birefringence

At present, the DM abundance is usually parametrized by the following density parameter

⌦� 0 =
⇢� 0

⇢c 0
=

8⇡GM�n� 0

3H2
0

, (30)

where M� denotes the ADM particle mass, while H0, ⇢c, ⇢� 0 and n� 0 are the present-day

Hubble parameter, critical density, ADM mass density and its number density, respectively.

Here we have used the relations ⇢� 0 = M�n� 0 and ⇢c 0 = 3H2
0/(8⇡G) in the last equality

with G the Newton constant. By further considering the evolution of the ADM density with

the cosmological expansion n� = (1+ z)3n� 0, we can obtain the birefringence angle induced

by ADM as follows
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where we also take into account the Hubble parameter evolution of H = (1 + z)3/2H0

in the matter-dominated era. By taking the experimental values of various cosmological

parameters [53] into Eq. (31), the birefringence angle is given by

�↵ = 5.24⇥ 10�3
�

✓
1.77GeV

M

◆2 ✓5GeV

M�

◆
, (32)

where we have taken the benchmark ADM mass to be M� ⇡ 5 GeV which could explain the

cosmological ratio of the DM to the ordinary baryonic matter [44].

In light of the expression of the photon polarization rotation angle �↵ in Eq. (32), we

would like to investigate existing experimental constraints on the our ADM explanation of

the CMB cosmic birefringence. In fact, as shown in the following subsections, DM indirect

and direct searches have already placed useful bounds on the relevant parameter space.

B. Constraints From CMB Power Spectra

By identifying fermions in the current Jµ = �̄�µ� as ADM particles, the e↵ective CS in-

teraction of LCS in Eq. (1) could generate ADM-photon elastic scatterings as shown in Fig. 2,

which would leave imprints on the CMB angular spectrum and the large scale structure [61–

65]. In particular, due to the collisional damping caused by the ADM-photon interaction,

the obtained matter power spectrum would show significant suppression at small scales to-

gether with a series of damped oscillations. Moreover, such a scattering between ADM and
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with G the Newton constant. By further considering the evolution of the ADM density with

the cosmological expansion n� = (1+ z)3n� 0, we can obtain the birefringence angle induced

by ADM as follows

�↵ =
1

2

�

M2

⇢c 0⌦� 0

M�

Z zD

0

(1 + z)3
dz

H(1 + z)
⇡

1

2

�

M2

3H0⌦� 0

8⇡GM�

2

3
(1 + zD)

3/2
, (31)

where we also take into account the Hubble parameter evolution of H = (1 + z)3/2H0

in the matter-dominated era. By taking the experimental values of various cosmological

parameters [53] into Eq. (31), the birefringence angle is given by

�↵ = 5.24⇥ 10�3
�

✓
1.77GeV

M

◆2 ✓5GeV

M�

◆
, (32)

where we have taken the benchmark ADM mass to be M� ⇡ 5 GeV which could explain the

cosmological ratio of the DM to the ordinary baryonic matter [44].

In light of the expression of the photon polarization rotation angle �↵ in Eq. (32), we

would like to investigate existing experimental constraints on the our ADM explanation of

the CMB cosmic birefringence. In fact, as shown in the following subsections, DM indirect

and direct searches have already placed useful bounds on the relevant parameter space.

B. Constraints From CMB Power Spectra

By identifying fermions in the current Jµ = �̄�µ� as ADM particles, the e↵ective CS in-

teraction of LCS in Eq. (1) could generate ADM-photon elastic scatterings as shown in Fig. 2,

which would leave imprints on the CMB angular spectrum and the large scale structure [61–

65]. In particular, due to the collisional damping caused by the ADM-photon interaction,

the obtained matter power spectrum would show significant suppression at small scales to-

gether with a series of damped oscillations. Moreover, such a scattering between ADM and

10
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Ø For the conventional ADM with M𝛘 ≃ 5 GeV, the model can suffer exp. 
constraints from CMB power spectrum and DM direct searches.

5 GeV ADM: Constraints

Ø CMB constraint: the interaction between ADM 
𝛘 and CMB photons would cause power 
suppression at high multipoles and dark BAO:

Ø Computation of Feynman diagram gives the 
temperature-dependent 𝛘-𝛄 cross section   

photons would also manifest itself in the CMB power spectra as modifications of relative

magnitudes and shifts of positions of the acoustic peaks. Therefore, we can use the CMB

angular power spectra of temperature and polarizations to constrain our ADM model.

FIG. 2. The Feynman diagram for DM-photon scatterings, which can impose the constraint on

the ADM model from the CMB measurements from the Planck Collaboration.

Note that the ADM-photon interaction in Eq. (1) gives rise to the following amplitude

iM =
1

2

�

M2
ū�(k1)�µu�(p1)✏

µ⌫⇢�(k2 + p2)⇢✏⌫(p2)✏
⇤
�(k2) , (33)

which can leads to the ADM-� scattering cross section as follows

��� ⇡
�
2
p
2
1 cm

8⇡M4
, (34)

where p1 cm = |p1 cm| stands for the incoming photon momentum in the center-of-mass (cm)

frame. By assuming that the ADM has already become non-relativistic around the photon

decoupling, the relation M� � p1 cm ⇠ T� holds so that we only keep the leading-order term

in the expansion with respect to the small ratio of p1 cm/M� in Eq. (34).

It is shown in Ref. [66, 67] that the quantity controlling the cosmological evolution of

ADM and photons in the Boltzmann equations is the following thermally averaged ADM-

photon cross section

h�vMøli�� =

R
���vMøldn�dn�R

dn�dn�
, (35)
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Figure 1. The e↵ect of DM-� interactions on the TT (left) and EE (right) components of
the CMB angular power spectrum, where the strength of the interaction is characterised by u ⌘

[�DM-�/�Th] [mDM/100 GeV]�1 (u = 0 corresponds to zero DM-� coupling) and �DM-� is constant.
For all the curves, we consider a flat ⇤CDM model with H0 = 70 km s�1 Mpc�1 (h = 0.7), ⌦⇤ = 0.7,
⌦m = 0.3 and ⌦b = 0.05, where u is the only additional parameter. The new coupling has two main
e↵ects: i) a suppression of the small-scale peaks due to a combination of collisional damping and a
delayed photon decoupling, and ii) a shift in the peaks to larger ` due to a decrease in the sound
speed of the thermal plasma. (Note that u = 10�4 is di�cult to distinguish from u = 0 at this scale).

Firstly, the DM-� interactions induce collisional damping (see ref. [32, 34]), thus re-
ducing the magnitude of the small-scale peaks and e↵ectively cutting o↵ the angular power
spectrum at lower values of `. For very large cross sections, this e↵ect is enhanced by a
delay in the epoch of photon last-scattering, increasing the width of the last-scattering sur-
face. Secondly, the presence of significant DM-� interactions decreases the sound speed of
the thermal plasma [33]. Acoustic oscillations have a lower frequency, leading to a shift in
the position of the Doppler peaks to larger `.

We note that there is a slight enhancement of the first acoustic peak with respect to
⇤CDM (⇠ 0.1% in TT and ⇠ 0.3% in EE for u = 10�4) due to a decrease in the di↵usion
length of the photons.

As expected, these e↵ects are enhanced for a larger cross section or a smaller DM mass
(i.e. a greater number density of DM particles for the same relic density), corresponding to a
larger value of u and a later epoch of DM-� decoupling. Therefore, by fitting the TT and EE

components of the CMB spectrum with cosmological data, one can constrain the value of u
and thus determine the maximal scattering cross section that is allowed for a given DM mass.

3 Results and outlook

In this section, we present our constraints on the DM-� elastic scattering cross section, which
is considered to be either constant or proportional to the temperature squared. We discuss
important features of the temperature and polarisation spectra in the presence of DM-�
interactions and outline prospects for future CMB experiments.

3.1 Constraints from the Planck one-year data release

To fit our model to the data, we varied the parameters of the minimal flat ⇤CDM cosmology,
namely: the baryon density (⌦bh

2), the dark matter density (⌦DMh
2), the scalar spectral

– 6 –

where vMøl is the Møller velocity [67] and the di↵erential density dni is defined by

dni = gi
d
3
pi

(2⇡)3
fi(pi) , (36)

in which gi is the independent degrees of freedom of the particle i and fi(pi) is the associ-

ated distribution. Here the distributions for photons and ADM particles are defined in the

cosmic comoving frame. Since photons are always kept in thermal equilibrium state with

temperature T�, so that they should obey the Bose-Einstein distribution

f�(p) =
1

ep/T� � 1
, (37)

where we have taken the Boltzmann constant to be kB = 1. For the ADM, we do not need

the explicit form of its distribution function f�(p) here. As argued in Ref. [67], due to the

following relation

h�vMøli = h�vlabi
lab

, (38)

it is more convenient to compute the thermally averaged cross section in the lab frame,

in which the ADM particle in the scattering is initially at rest. In Eq. (38), vlab refers

to the relative velocity and the subscript “lab” on the bracket denotes the thermal average

computed in the lab frame. Also, at the leading order in the small momentum expansion, the

ADM-photon scattering cross section in the lab frame takes the same form as in Eq. (34)

except for the photon momentum p1 cm replaced by the counterpart p1 lab. Therefore, by

taking Eqs. (37) and (34) into Eq. (38), the thermally averaged ADM-photon cross section

is given by

h�vMøli�� '
3⇣(5)

2⇡⇣(3)

�
2
T

2
�

M4
= 0.412

✓
�
2
T

2
�

M4

◆
, (39)

where we have only kept the dominant term when T� ⌧ M�. In the derivation of Eq. (39),

we have factored out and cancelled the ADM density n� between the numerator and de-

nominator in Eq. (35) since �vlab does not depends on the ADM momentum at all.

For the given ADM-photon scatterings with the cross section quadratically proportional

to the photon temperature T�, the best constraint is given in Ref. [62] as follows

h�vMøli��(T
0
� ) . 6⇥ 10�40

✓
M�

GeV

◆
cm2

, at 68% C.L. , (40)
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where the cross section on the left-hand side take the value at present when the CMB

temperature is T
0
� = 2.73 K. By comparing Eqs. (39) and (40), we can express the CMB

constraint in terms of our model parameters as follows

�

M2
. 8.24⇥ 106 GeV�2

✓
M�

GeV

◆1/2

. (41)

As a result, given parameters in Eq. (32) required to explain the observed cosmic bire-

fringence, the limit in Eq. (41) is too weak to place any useful constraint on the model

parameters, especially when the ADM particle mass is taken to be M� . 10 GeV.

Finally, we would like to mention that the ADM-photon coupling upper bound presented

in Eq. (40) was derived in Ref. [62] by using the Planck 2013 data on the CMB TT and EE

auto power spectra, which was somewhat out of date. In particular, the Planck Collaboration

has released their data on the CMB angular power spectra of temperature, polarization and

lensing in 2015 and 2018. Moreover, as shown in Refs. [64, 65], the inclusion of the data

from BAO and weak lensing experiments can further strengthen the constraining power.

Therefore, we expect that the CMB constraint on the ADM-photon interaction in Eq. (41)

can be further improved by updating the CMB data and including the BAO and weak

lensing data. Unfortunately, such a goal has only been achieved in Refs. [63–65] for the case

with a constant DM-photon scattering cross section. For the present ADM model with the

photon scattering cross section proportional to T
2
� , there is not any new progress after the

study in Ref. [62], which provides the best experimental limit up to now.

C. Constraint From DM Direct Detections

The ADM-photon interaction in Eq. (1) can also give rise to the e↵ective couplings

between the ADM particle � and SM quarks at the one-loop level as illustrated in Fig. 3,

which can be further probed by the DM DD experiments. Note that the loop integral

for the Feynman diagram of Fig. 3 is logarithmically divergent due to the insertion of the

nonrenormalizable ADM-photon e↵ective operator LCS. Therefore, it is expected that the

ADM-quark scattering is dominated by the logarithmically divergent term, which can be

expressed by the following e↵ective ADM-quark interaction

L�q = �

X

q

1

m
2
Vq

�̄�µ�q̄�
µ
�
5
q , (42)
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Ø DM direct searches
5 GeV ADM: Constraints

Ø Effective ADM-quark interaction

Ø RG running è Mixing with 
FIG. 3. The Feynman diagram for ADM direct detections.

where

1

m
2
Vq

=
3↵

8⇡

�

M2
Q

2
q ln

⇤2

m2
q

, (43)

with mq and Qq denoting the mass and charge of the quark flavor q, while other contri-

butions are suppressed by small scales such as the momentum transfer or external particle

momenta. The factor ln⇤2
/m

2
q comes from the logarithmic divergence with the UV cuto↵

scale identified as ⇤, which can be equal to M or not depending on model assumptions.

Also, we have followed the convention in Ref. [68] to parametrize the ADM-quark couplings

to be 1/m2
Vq
, as if there is a heavy vector particle Vq of mass mVq mediating the interaction

between the flavor q and �.

In order to connect the e↵ective interactions in Eq. (42) with the observables in the

DM direct searches, one can match L�q to the nucleon-level non-relativistic (NR) operators

O
NR
7 and O

NR
9 [68–71], both of which lead to velocity and momentum suppressed spin-

dependent ADM-quark interactions. Hence, we expect näıvely that the DM DD constraints

imposed on operators in Eq. (42) would be extremely weak. However, as pointed out in

Refs. [68, 72, 73], the renormalization group (RG) running would cause the mixing among

dimension-six DM-quark e↵ective operators and, in particular, generate the couplings of

the DM vector current to the quark vector current, such as �̄�µ�q̄�µ
q, which would further

induce the spin-independent ADM-quark scatterings without any velocity or momentum
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spin-dependent DM-nucleon DD signal
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Strong constraints from SI DD signal

F. D’Eramo et al (2016) 

FIG. 4. The parameter space in the log10(M�/GeV)- log10(�/M
2/(GeV)�2) plane. The solid

blue band illustrates the parameter region favored by the cosmic birefringence signal observed by

Planck, while the yellow area has been excluded by LZ experiment. The vertical red line denotes

the ADM mass to be M� = 5 GeV, which is preferred by the observed DM-baryon mass ratio in

our Universe.

expressed by our ADM model parameters as follows

�

M2
.

✓
M�

5 keV

◆1/2 ✓ 1

1.2⇥ 10�4 TeV

◆2

, (45)

Obviously, such a constraint is still too weak compared with the parameters obtained by the

measured cosmic birefringence angle. Finally, the ADM mass of M� = 5 keV is well above

the lowest DM mass bound M� & 1 keV derived from the phase space density considerations

in Ref. [79]. Note that there are other stringent constraints from observations of the Lyman-

↵ forest [80] and the matter power spectrum [81–83], which can also limit the DM mass

and the ADM-photon interactin in Eq. (1). However, such constraints are rather indirect,

and contain many uncertainties from non-linear matter evolutions. Therefore, in the present

work, we do not consider their impacts on our model parameters.
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Ø Lower the ADM mass to warm DM range with M𝛘 = 5 keV
5 keV Warm ADM

Ø CB angle from CMB

Ø Weak Constraints: Evade all Constraints!

A. ADM Explanation of the Cosmic Birefringence

At present, the DM abundance is usually parametrized by the following density parameter

⌦� 0 =
⇢� 0

⇢c 0
=

8⇡GM�n� 0

3H2
0

, (30)

where M� denotes the ADM particle mass, while H0, ⇢c, ⇢� 0 and n� 0 are the present-day

Hubble parameter, critical density, ADM mass density and its number density, respectively.

Here we have used the relations ⇢� 0 = M�n� 0 and ⇢c 0 = 3H2
0/(8⇡G) in the last equality

with G the Newton constant. By further considering the evolution of the ADM density with

the cosmological expansion n� = (1+ z)3n� 0, we can obtain the birefringence angle induced

by ADM as follows

�↵ =
1

2

�

M2

⇢c 0⌦� 0

M�

Z zD

0

(1 + z)3
dz

H(1 + z)
⇡

1

2

�

M2

3H0⌦� 0

8⇡GM�

2

3
(1 + zD)

3/2
, (31)

where we also take into account the Hubble parameter evolution of H = (1 + z)3/2H0

in the matter-dominated era. By taking the experimental values of various cosmological

parameters [53] into Eq. (31), the birefringence angle is given by

�↵ = 5.24⇥ 10�3
�

✓
1.77TeV

M

◆2 ✓5 keV

M�

◆
, (32)

where we have taken the benchmark ADM mass to be M� ⇡ 5 GeV which could explain the

cosmological ratio of the DM to the ordinary baryonic matter [44].

In light of the expression of the photon polarization rotation angle �↵ in Eq. (32), we

would like to investigate existing experimental constraints on the our ADM explanation of

the CMB cosmic birefringence. In fact, as shown in the following subsections, DM indirect

and direct searches have already placed useful bounds on the relevant parameter space.

B. Constraints From CMB Power Spectra

By identifying fermions in the current Jµ = �̄�µ� as ADM particles, the e↵ective CS in-

teraction of LCS in Eq. (1) could generate ADM-photon elastic scatterings as shown in Fig. 2,

which would leave imprints on the CMB angular spectrum and the large scale structure [61–

65]. In particular, due to the collisional damping caused by the ADM-photon interaction,

the obtained matter power spectrum would show significant suppression at small scales to-

gether with a series of damped oscillations. Moreover, such a scattering between ADM and

10

l Free from DM DD constraints;
l DM phase-space distribution in dSphs è M𝛘 ≳ 1 keV;
l Detection of CMB spectral distortions from FIRAS data

l Lyman-𝛂 forest; 
l Matter power spectrum;

A. Boyarsky et al (2008) 

FIG. 4. The parameter space in the log10(M�/GeV)- log10(�/M
2/(GeV)�2) plane. The solid

blue band illustrates the parameter region favored by the cosmic birefringence signal observed by

Planck, while the yellow area has been excluded by LZ experiment. The vertical red line denotes

the ADM mass to be M� = 5 GeV, which is preferred by the observed DM-baryon mass ratio in

our Universe.
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Obviously, such a constraint is still too weak compared with the parameters obtained by the

measured cosmic birefringence angle. Finally, the ADM mass of M� = 5 keV is well above

the lowest DM mass bound M� & 1 keV derived from the phase space density considerations

in Ref. [79]. Note that there are other stringent constraints from observations of the Lyman-

↵ forest [80] and the matter power spectrum [81–83], which can also limit the DM mass

and the ADM-photon interactin in Eq. (1). However, such constraints are rather indirect,

and contain many uncertainties from non-linear matter evolutions. Therefore, in the present

work, we do not consider their impacts on our model parameters.
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Ø Cosmic Birefringence is a remarkable parity-violating effect, which is 
beyond the standard cosmology prediction;

Ø Recently, new technique breakthrough in CMB data analysis leads to a 
hint towards a nonzero CB rotation angle;

Ø We provide a new explanation towards the CMB CB, which is caused by 
the CS-like coupling between a fermion current and photons. As a result, 
the source for CB is the fermion number asymmetry;

Ø By identifying fermions as cosmological electron neutrinos, CB rotation 
angle can be explained by the 𝛎e asymmetry indicated recently by the 
EMPRESS survey;

Ø For the ADM case, the conventional ADM with M𝛘 ≃ 5 GeV is excluded 
by DM DD data from LZ, while the warm ADM of M𝛘 ≃ 5 keV can satisfy 
all constraints.

Conclusions


