Cosmic Birefringence from Neutrino and Dark Matter Asymmetries

Da Huang

National Astronomical Observatories， Chinese Academy of Sciences

Ren－Peng Zhou，Da Huang，Chao－Qiang Geng，arXiv： 2302.11140

Content

＞Introduction to CB status
＞ CB from a Fermion Current
$>$ Neutrino Asymmetry
＞Dark Matter Asymmetry
＞Conclusions

Introduction to Cosmic Birefringence

＞Cosmic birefringence is a parity－violating phenomenon，which might indicate the new physics beyond the standard cosmology（ Λ CDM）．
＞Traditional explanation of CB involves an axion or ALP coupled to the EM tensor via a CS coupling

Ni（1977）；Turner \＆Widrow（1988）
the effective Lagrangian for axion electrodynamics is
where g_{a} is a coupling constant of the order α ，and the vacuum angle $\theta=\phi_{a} / f_{a}$（ $\phi_{a}=$ axion field）．The equations
$>$ The axion can be dark matter or dark energy，which act as a ＂birefringence material＂filling in our Universe．

Introduction to Cosmic Birefringence

> Ni (1977); Turner \& Widrow (1988)

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \theta \partial^{\mu} \theta-\frac{1}{4} F_{\mu \nu} F^{\mu v}+g_{a} \theta F_{\mu \nu} \widetilde{F}^{\mu v} \quad \begin{aligned}
& \sum_{\mu \nu} F_{\mu \nu} \tilde{F}^{\mu \nu}=-4 \mathbf{B} \cdot \mathbf{E} \\
& \text { Parity Odd }
\end{aligned}
$$

> The EOM is modified to

$$
\left(-\omega_{ \pm}^{2}+k^{2}\right) A_{ \pm}(\eta)=0 \square\left(-\omega_{ \pm}^{2}+k^{2} \pm 4 g_{a} k \theta^{\prime}\right) A_{ \pm}(\eta)=0
$$

> Different phase velocities for $\mathrm{RH}(+)$ and $\mathrm{LH}(-)$ photon polarizations

$$
\frac{\omega_{ \pm}}{k} \simeq 1 \pm \frac{2 g_{a} \theta^{\prime}}{k}
$$

$>\mathrm{CB}$ rotation angle $\beta=-2 g_{a} \int_{t_{\text {emitted }}}^{t_{\text {obs }}} d t \dot{\theta}=2 g_{a}\left[\theta\left(t_{e}\right)-\theta\left(t_{o}\right)\right]$

Cosmic Birefringence in the CMB

Lue, Wang \& Kamionkowski (1999); Feng et al. (2005); Liu et al (2006); Zhao et al. (2015)

Cosmic Birefringence in the CMB

Lue, Wang \& Kamionkowski (1999); Feng et al. (2005); Liu et al (2006); Zhao et al. (2015)
$>$ E-B mixing by rotation of the linear polarization plane in CMB

$$
E_{\ell}^{\circ} \pm i B_{\ell}^{\circ}=\left(E_{\ell} \pm i B_{\ell}\right) e^{ \pm 2 i \beta}
$$

which gives

$$
\begin{aligned}
& E_{\ell}^{o}=E_{\ell} \cos (2 \beta)-B_{\ell} \sin (2 \beta) \\
& B_{\ell}^{o}=E_{\ell} \sin (2 \beta)+B_{\ell} \cos (2 \beta)
\end{aligned}
$$

$><\mathrm{E} * \mathrm{~B}>$ correlation measures $\boldsymbol{\beta}$

$$
\begin{aligned}
C_{\ell}^{E B, \mathrm{obs}} & =\frac{1}{2}\left(C_{\ell}^{E E}-C_{\ell}^{B B}\right) \sin (4 \beta)+C_{\ell}^{E B} \cos (4 \beta) \\
& =\frac{1}{2}\left(C_{\ell}^{E E, \mathrm{obs}}-C_{\ell}^{B B, \mathrm{obs}}\right) \tan (4 \beta)+\frac{C_{\ell}^{E B}}{\cos (4 \beta)}
\end{aligned}
$$

Cosmic Birefringence in the CMB
Minami et al．（2019）；Minami \＆Komatsu（2020）；Diego－Palazuelos et al．（2022）；Eskilt \＆Komatsu（2022）
$>$ Problem：miscalibration of polarization angles $\alpha \rightarrow$ Only $\alpha+\boldsymbol{\beta}$ measured

Cosmic birefringence

$>$ Develop new method to determine $\boldsymbol{\alpha}$ with Galactic foreground and break the degeneracy

$$
\beta=0.30^{\circ} \pm 0.11^{\circ}(68 \% \text { C.L. })
$$

Important Question：

Is there any alternative explanation to the nonzero CB angle beyond the axion or ALP？

Cosmic Birefringence from a Fermion Current

＞Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{EM}}+\mathcal{L}_{\mathrm{CS}}=-\frac{1}{4} \sqrt{g} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \sqrt{g} \frac{\beta}{M^{2}} J_{\mu} A_{\nu} \tilde{F}^{\mu \nu},
$$

Break parity， preserve CP
$>$ Photon Field Equation＋Bianchi Identity

$$
\nabla_{\mu} F^{\mu \nu}=\frac{\beta}{M^{2}} J_{\mu} \tilde{F}^{\mu \nu}, \quad \nabla_{\mu} \tilde{F}^{\mu \nu}=0
$$

$$
\tilde{F}^{\mu \nu} \equiv \frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma},
$$

$>$ We are working in the flat FRW universe with metric $d s^{2}=-d t^{2}+R^{2}(t) d \mathbf{x}^{2}$ ， and in the background with nonzero homogeneous fermion current density $J_{\mu}=\left(J_{t}, \mathbf{J}\right)$ ，where

$$
J_{t}=\Delta n=n-\bar{n}, \quad \mathbf{J}=0
$$

Fermion Asymmetry
$>$ Transform into the conformal time $d \eta=d t / R$ ，so $d s^{2}=R^{2}(\eta)\left(-d \eta^{2}+d \mathbf{x}^{2}\right)$

$$
J_{\eta}=R(\eta) J_{t}=R(\eta) \Delta n, \quad \mathbf{J}=0
$$

C．Q．Geng，S．H．Ho，J．N．Ng，JCAP 09（2007）010；R．P．Zhou，DH，C．Q．Geng，arXiv： 2302.11140

Cosmic Birefringence from a Fermion Current

$>$ Define \mathbf{E} and \mathbf{B} fields

$$
F^{\mu \nu}=R^{-2}\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right), \quad \tilde{F}^{\mu \nu}=R^{-2}\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & -E_{x} & E_{y} \\
-B_{y} & E_{z} & 0 & -E_{x} \\
-B_{z} & -E_{y} & E_{x} & 0
\end{array}\right)
$$

＞Modified Maxwell Equations

$$
\begin{gathered}
\frac{\partial}{\partial \eta}\left(R^{2} \mathbf{E}\right)-\nabla \times\left(R^{2} \mathbf{B}\right)=\frac{\beta}{M^{2}} J_{\eta}\left(R^{2} \mathbf{B}\right), \quad \nabla \cdot \mathbf{E}=0 \\
\frac{\partial}{\partial \eta}\left(R^{2} \mathbf{B}\right)+\nabla \times\left(R^{2} \mathbf{E}\right)=0, \quad \nabla \cdot \mathbf{B}=0
\end{gathered}
$$

$>$ Modified Wave Equation

$$
\frac{\partial^{2}}{\partial \eta^{2}}\left(R^{2} \mathbf{B}\right)-\nabla^{2}\left(R^{2} \mathbf{B}\right)=-\frac{\beta}{M^{2}} J_{\eta} \nabla \times\left(R^{2} \mathbf{B}\right)
$$

Cosmic Birefringence from a Fermion Current

＞Go to Fourier space and assume EM wave propagates alone \mathbf{z} direction

$$
R^{2} \mathbf{B}(\mathbf{x}, \eta)=e^{-i k z} R^{2} \mathbf{B}(\eta)
$$

＞Define two circular polarizations

$F_{+}:$Right-handed;
$F_{.}$Left-handed;
$>$ WKB Solution：$F_{ \pm}(\eta)=\exp \left[i k \int\left(1 \pm \frac{\beta}{M^{2}} \frac{J_{\eta}}{k}\right)^{1 / 2} d \eta\right]$
＞The plane of a linearly polarization rotates by an angle

$$
\Delta \alpha \approx \frac{1}{2} \frac{\beta}{M^{2}} \int J_{\eta} d \eta=\frac{1}{2} \frac{\beta}{M^{2}} \int \Delta n d t
$$

The effect accumulates over long distances！

CB from Neutrino Asymmetry

＞Identify fermions in the current as electron neutrinos $\boldsymbol{v}_{\mathrm{e}}$

$$
J_{\mu}^{\nu_{e}}={\overline{\left(\nu_{e}\right)}}_{L} \gamma_{\mu}\left(\nu_{e}\right)_{L}
$$

＞Polarization angle rotation of CMB photons

$$
\Delta \alpha=\frac{1}{2} \frac{\beta}{M^{2}} \int J_{\eta}^{\nu_{e}} d \eta=\frac{1}{2} \frac{\beta}{M^{2}} \int \Delta n_{\nu_{e}} d t \quad \Delta n_{\nu_{e}} \equiv n_{\nu_{e}}-n_{\overline{\nu_{e}}}
$$

＞In the literature，v_{e} asymmetry is parametrized by

$$
\eta_{\nu_{e}}=\frac{\Delta n_{\nu_{e}}}{n_{\gamma}}=\frac{1}{12 \zeta(3)}\left(\frac{T_{\nu}}{T_{\gamma}}\right)^{3}\left(\pi^{2} \xi_{\nu_{e}}+\xi_{\nu_{e}}^{3}\right) \stackrel{\left(T_{\nu} / T_{\gamma}\right)^{3}=4 / 11}{\square \eta_{\nu_{e}} \simeq 0.249 \xi_{\nu_{e}}}
$$

$$
n_{\gamma}=\left(\frac{2 \zeta(3)}{\pi^{2}}\right) T_{\gamma}^{3}
$$

$\xi_{\boldsymbol{v}}: \boldsymbol{v}_{\mathrm{e}}$ degeneracy parameter

CB from Neutrino Asymmetry

> CB rotation angle

$$
\Delta \alpha=0.03 \beta\left(\frac{\xi_{\nu_{e}} T_{\gamma 0}^{3}}{M^{2}}\right) \int_{0}^{z_{D}} \frac{(1+z)^{2}}{H(z)} d z \approx 0.03 \beta\left(\frac{\xi_{\nu_{e}} T_{\gamma 0}^{3}}{M^{2} H_{0}}\right) \frac{2}{3}\left(1+z_{D}\right)^{3 / 2}
$$

where we have used $\quad T_{\gamma}=T_{\gamma 0}(1+z) . \quad d t=\frac{d R}{H R}=-\frac{d z}{(1+z) H}$,

$$
H(z)=H_{0}(1+z)^{3 / 2}
$$

>Recently, by measuring the primordial helium abundance in the metal poor galaxies, the EMPRESS survey has found a tension with SM prediction, indicating a remarkably nonzero $\boldsymbol{v}_{\mathrm{e}}$ degeneracy parameter

$$
\xi_{\nu_{e}}=0.05_{-0.02}^{+0.03}
$$

A. Matsumoto et al., APJ941(2022)167; A.-K. Burns et al. 2206.00693;

2023/5/s M. Escudero et al. 2208.03201

Neutrino Asymmetry

CB from Asymmetric Dark Matter

＞Evidence for dark matter
－Rotation Curves of Spiral Galaxies

－CMB

－Gravitational Lensing

－Bullet Cluster

CB from Asymmetric Dark Matter

$>$ It is interesting to consider CB from a fermionic DM current

$$
J_{\mu}^{\chi}=\bar{\chi} \gamma_{\mu} \chi
$$

$>$ Source of CB is $J_{0}^{\chi}=\Delta n_{\chi}=n_{\chi}-n_{\bar{\chi}}$

Asymmetric DM

＞Many models for producing ADM has been proposed in the literature． Especially when $\mathrm{M}_{\chi} \simeq 5 \mathrm{GeV}$ ，ADM can help explain the density ratio between visible and dark matters．

S．Nussinov（1985）；D．B．Kaplan（1992）；
D．E．Kaplan＋（2009）；K．M．Zurek（2014）；
$>$ Here we do not specify the ADM production mechanism and assume it can induce CB via its coupling with photon CS term．

CB from Asymmetric Dark Matter

＞Recall the CB rotation angle

$$
\Delta \alpha \approx \frac{1}{2} \frac{\beta}{M^{2}} \int J_{\eta} d \eta=\frac{1}{2} \frac{\beta}{M^{2}} \int \Delta n d t
$$

＞For ADM，$\Delta \mathrm{n}_{\mathrm{x}}=\mathrm{n}_{\mathrm{x}}$ ，and cosmological DM abundance is parametrized by

$$
\Omega_{\chi 0}=\frac{\rho_{\chi 0}}{\rho_{c 0}}=\frac{8 \pi G M_{\chi} n_{\chi 0}}{3 H_{0}^{2}} \text { with } \rho_{\chi 0}=M_{\chi} n_{\chi 0} \quad \rho_{c 0}=3 H_{0}^{2} /(8 \pi G)
$$

＞According to cosmological evolution，$n_{\chi}=(1+z)^{3} n_{\chi 0}$ and $H=(1+z)^{3 / 2} H_{0}$

$$
\begin{aligned}
\Delta \alpha & =\frac{1}{2} \frac{\beta}{M^{2}} \frac{\rho_{c 0} \Omega_{\chi 0}}{M_{\chi}} \int_{0}^{z_{D}}(1+z)^{3} \frac{d z}{H(1+z)} \approx \frac{1}{2} \frac{\beta}{M^{2}} \frac{3 H_{0} \Omega_{\chi 0}}{8 \pi G M_{\chi}} \frac{2}{3}\left(1+z_{D}\right)^{3 / 2} \\
& =5.24 \times 10^{-3} \beta\left(\frac{1.77 \mathrm{GeV}}{M}\right)^{2}\left(\frac{5 \mathrm{GeV}}{M_{\chi}}\right)
\end{aligned}
$$

5 GeV ADM: Constraints

$>$ For the conventional ADM with $\mathrm{M}_{\chi} \simeq 5 \mathrm{GeV}$, the model can suffer exp. constraints from CMB power spectrum and DM direct searches.
> CMB constraint: the interaction between ADM χ and CMB photons would cause power suppression at high multipoles and dark BAO:
$>$ Computation of Feynman diagram gives the temperature-dependent χ - $\boldsymbol{\gamma}$ cross section

$$
\left\langle\sigma v_{\mathrm{Mol}}\right\rangle_{\chi \gamma} \simeq \frac{3 \zeta(5)}{2 \pi \zeta(3)} \frac{\beta^{2} T_{\gamma}^{2}}{M^{4}}=0.412\left(\frac{\beta^{2} T_{\gamma}^{2}}{M^{4}}\right)
$$

$>$ Data from CMB TT and EE modes constrain

$$
\begin{aligned}
\left\langle\sigma v_{\mathrm{M} \rho 1}\right\rangle_{\gamma \gamma}\left(T_{\gamma}^{0}\right) & \lesssim 6 \times 10^{-40}\left(\frac{M_{\chi}}{\mathrm{GeV}}\right) \mathrm{cm}^{2}, \quad \text { at } 68 \% \text { C.L. } \\
& \frac{\beta}{M^{2}} \lesssim 8.24 \times 10^{6} \mathrm{GeV}^{-2}\left(\frac{M_{\chi}}{\mathrm{GeV}}\right)^{1 / 2}
\end{aligned}
$$

5 GeV ADM：Constraints

＞DM direct searches

＞Effective ADM－quark interaction

$$
\mathcal{L}_{\chi q}=-\sum_{q} \frac{1}{m_{V_{q}}^{2}} \bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^{5} q \quad \frac{1}{m_{V_{q}}^{2}}=\frac{3 \alpha}{8 \pi} \frac{\beta}{M^{2}} Q_{q}^{2} \ln \frac{\Lambda^{2}}{m_{q}^{2}}
$$

\longrightarrow
Velocity and momentum suppressed spin－dependent DM－nucleon DD signal
$>$ RG running \rightarrow Mixing with $\bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} q$ ，
Strong constraints from SI DD signal

5 GeV ADM
Excluded by LZ！

F．D＇Eramo et al（2016）

5 keV Warm ADM

＞Lower the ADM mass to warm DM range with $\mathrm{M}_{\mathrm{x}}=5 \mathrm{keV}$
＞ CB angle from CMB

$$
\Delta \alpha=5.24 \times 10^{-3} \beta\left(\frac{1.77 \mathrm{TeV}}{M}\right)^{2}\left(\frac{5 \mathrm{keV}}{M_{\chi}}\right)
$$

＞Weak Constraints：

Evade all Constraints！

－Free from DM DD constraints；
－DM phase－space distribution in dSphs $\rightarrow \mathrm{M}_{\mathrm{x}} \gtrsim 1 \mathrm{keV}$ ；
A．Boyarsky et al（2008）
－Detection of CMB spectral distortions from FIRAS data

$$
\frac{\beta}{M^{2}} \lesssim\left(\frac{M_{\chi}}{5 \mathrm{keV}}\right)^{1 / 2}\left(\frac{1}{1.2 \times 10^{-4} \mathrm{TeV}}\right)^{2}
$$

Y．Ali－Haimoud et al（2015）
－Lyman－α forest；
A．Boyarsky et al（2009）
－Matter power spectrum；
M．Escudero et al（2018）

Conclusions

＞Cosmic Birefringence is a remarkable parity－violating effect，which is beyond the standard cosmology prediction；
＞Recently，new technique breakthrough in CMB data analysis leads to a hint towards a nonzero CB rotation angle；
＞We provide a new explanation towards the CMB CB，which is caused by the CS－like coupling between a fermion current and photons．As a result， the source for CB is the fermion number asymmetry；
＞By identifying fermions as cosmological electron neutrinos，CB rotation angle can be explained by the v_{e} asymmetry indicated recently by the EMPRESS survey；
＞For the ADM case，the conventional ADM with $\mathrm{M}_{\mathrm{x}} \simeq 5 \mathrm{GeV}$ is excluded by DM DD data from LZ，while the warm ADM of $\mathrm{M}_{x} \simeq 5 \mathrm{keV}$ can satisfy all constraints．

