Cosmic Birefringence from Neutrino and Dark Matter Asymmetries

Da Huang

National Astronomical Observatories, Chinese Academy of Sciences

Ren-Peng Zhou, Da Huang, Chao-Qiang Geng, arXiv: 2302.11140

Content

- Introduction to CB status
- CB from a Fermion Current
- > Neutrino Asymmetry
- Dark Matter Asymmetry
- Conclusions

- > **Cosmic birefringence** is a parity-violating phenomenon, which might indicate the new physics beyond the standard cosmology (Λ CDM).
- Traditional explanation of CB involves an axion or ALP coupled to the EM tensor via a CS coupling Ni (1977); Turner & Widrow (1988)

the effective Lagrangian for axion electrodynamics is $\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}, \qquad (3.7)$ $F^{\mu\nu} = \sum_{\alpha\beta} \frac{e^{\mu\nu\alpha\beta}}{2\sqrt{-g}}F_{\alpha\beta}$ where g_{a} is a coupling constant of the order α , and the vacuum angle $\theta = \phi_{a}/f_{a}$ (ϕ_{a} = axion field). The equations

The axion can be dark matter or dark energy, which act as a "birefringence material" filling in our Universe.

Ni (1977); Turner & Widrow (1988)

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\theta\partial^{\mu}\theta - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + g_{a}\theta F_{\mu\nu}\tilde{F}^{\mu\nu} \qquad \sum_{\mu\nu}F_{\mu\nu}\tilde{F}^{\mu\nu} = -4\mathbf{B}\cdot\mathbf{E}$$
Parity Odd

The EOM is modified to

$$(-\omega_{\pm}^2 + k^2) A_{\pm}(\eta) = 0 \implies (-\omega_{\pm}^2 + k^2 \pm 4g_a k\theta') A_{\pm}(\eta) = 0$$

Different phase velocities for RH(+) and LH(-) photon polarizations

$$\frac{\omega_{\pm}}{k} \simeq 1 \pm \frac{2g_a\theta'}{k}$$
> CB rotation angle $\beta = -2g_a \int_{t_{emitted}}^{t_{obs}} dt\dot{\theta} = 2g_a \left[\theta(t_e) - \theta(t_o)\right]$

41141

Carroll, Field & Jackiw (1990); Carroll & Field (1991); Harari & Sikivie (1992)

1

Cosmic Birefringence in the CMB

Lue, Wang & Kamionkowski (1999); Feng et al. (2005); Liu et al (2006); Zhao et al. (2015)

Cosmic Birefringence in the CMB

Lue, Wang & Kamionkowski (1999); Feng et al. (2005); Liu et al (2006); Zhao et al. (2015)

E-B mixing by rotation of the linear polarization plane in CMB

$$E_{\ell}^{\rm o} \pm i B_{\ell}^{\rm o} = (E_{\ell} \pm i B_{\ell}) e^{\pm 2i\beta}$$

which gives

$$E_{\ell}^{\rm o} = E_{\ell} \cos(2\beta) - B_{\ell} \sin(2\beta)$$

$$B_{\ell}^{\rm o} = E_{\ell} \sin(2\beta) + B_{\ell} \cos(2\beta)$$

 \succ <E*B> correlation measures β

$$C_{\ell}^{EB,\text{obs}} = \frac{1}{2} (C_{\ell}^{EE} - C_{\ell}^{BB}) \sin(4\beta) + C_{\ell}^{EB} \cos(4\beta)$$
$$= \frac{1}{2} (C_{\ell}^{EE,\text{obs}} - C_{\ell}^{BB,\text{obs}}) \tan(4\beta) + \frac{C_{\ell}^{EB}}{\cos(4\beta)}$$

6

2023/5/9

Cosmic Birefringence in the CMB

Minami et al. (2019); Minami & Komatsu (2020); Diego-Palazuelos et al. (2022); Eskilt & Komatsu (2022)

 \triangleright Problem: miscalibration of polarization angles $\alpha \rightarrow$ Only $\alpha + \beta$ measured

Cosmic birefringence

 $= 0.30^{\circ} \pm 0.11^{\circ} ~(68\%~C.L.)$

Develop new method to determine α with Galactic foreground and break the degeneracy

vith Galactic foreground and
ak the degeneracy
$$= 0.30^{\circ} \pm 0.11^{\circ}$$
 (68% C.L.)
Diego-Palazuelos et al. (2022) $regintartherefore the strength of the stren$

Stacked observed E.R. nover spectrum

2023/5/9

Important Question:

Is there any alternative explanation to the nonzero CB angle beyond the axion or ALP?

Cosmic Birefringence from a Fermion Current

> Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm EM} + \mathcal{L}_{\rm CS} = -\frac{1}{4}\sqrt{g}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}\sqrt{g}\frac{\beta}{M^2}J_{\mu}A_{\nu}\tilde{F}^{\mu\nu},$$

Photon Field Equation + Bianchi Identity

$$\nabla_{\mu}F^{\mu\nu} = \frac{\beta}{M^2} J_{\mu}\tilde{F}^{\mu\nu} , \qquad \nabla_{\mu}\tilde{F}^{\mu\nu} = 0 \,.$$

Break parity, preserve CP

$$\tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \,,$$

➢ We are working in the flat FRW universe with metric $ds^2 = -dt^2 + R^2(t) d\mathbf{x}^2$, and in the background with nonzero homogeneous fermion current density $J_\mu = (J_t, \mathbf{J})$, where

$$J_t = \Delta n = n - \overline{n}$$
, $\mathbf{J} = \mathbf{0}$.

Fermion Asymmetry

> Transform into the conformal time $d\eta = dt/R$, so $ds^2 = R^2(\eta) (-d\eta^2 + d\mathbf{x}^2)$

$$J_{\eta} = R(\eta)J_t = R(\eta)\Delta n, \qquad \mathbf{J} = \mathbf{0}.$$

C.Q. Geng, S.H. Ho, J.N. Ng, JCAP 09(2007)010; R.P. Zhou, DH, C.Q. Geng, arXiv: 2302.11140

Cosmic Birefringence from a Fermion Current

Define E and B fields

R.P. Zhou, **DH**, C.Q. Geng, arXiv: 2302.11140

$$F^{\mu\nu} = R^{-2} \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & B_z & -B_y \\ -E_y & -B_z & 0 & B_x \\ -E_z & B_y & -B_x & 0 \end{pmatrix}, \quad \tilde{F}^{\mu\nu} = R^{-2} \begin{pmatrix} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_x & E_y \\ -B_y & E_z & 0 & -E_x \\ -B_z & -E_y & E_x & 0 \end{pmatrix}.$$

Modified Maxwell Equations

$$\frac{\partial}{\partial \eta} \left(R^2 \mathbf{E} \right) - \nabla \times \left(R^2 \mathbf{B} \right) = \underbrace{\frac{\beta}{M^2} J_\eta \left(R^2 \mathbf{B} \right)}_{\frac{\partial}{\partial \eta}}, \quad \nabla \cdot \mathbf{E} = 0,$$
$$\frac{\partial}{\partial \eta} \left(R^2 \mathbf{B} \right) + \nabla \times \left(R^2 \mathbf{E} \right) = 0, \quad \nabla \cdot \mathbf{B} = 0,$$

Modified Wave Equation

$$\frac{\partial^2}{\partial \eta^2} \left(R^2 \mathbf{B} \right) - \nabla^2 \left(R^2 \mathbf{B} \right) = -\frac{\beta}{M^2} J_\eta \nabla \times \left(R^2 \mathbf{B} \right)$$

Cosmic Birefringence from a Fermion Current

> Go to Fourier space and assume EM wave propagates alone z direction

$$R^2 \mathbf{B}(\mathbf{x}, \eta) = e^{-ikz} R^2 \mathbf{B}(\eta)$$

Define two circular polarizations

$$\vec{k} = R^2 B_{\pm}(\eta) = R^2 (B_x \pm iB_y) \qquad F_{\pm}: \text{Right-handed}; \\ F_{\pm}: \text{Left-handed}; \\ F_{\pm}: \text{Left-handed}; \\ \text{WKB Solution:} \quad F_{\pm}(\eta) = \exp\left[ik \int \left(1 \pm \frac{\beta}{M^2} \frac{J_{\eta}}{k}\right)^{1/2} d\eta\right] \qquad \text{Different phase velocities of RH and LH states}$$

> The plane of a linearly polarization rotates by an angle

$$\Delta \alpha \approx \frac{1}{2} \frac{\beta}{M^2} \int J_{\eta} d\eta = \frac{1}{2} \frac{\beta}{M^2} \int \Delta n \, dt$$

The effect accumulates over long distances!

第二届地下和空间粒子物理与宇宙物理前沿问题研讨 会,杭州 R.P. Zhou, DH, C.Q. Geng, arXiv: 2302.11140

CB from Neutrino Asymmetry

> Identify fermions in the current as electron neutrinos v_e

$$J^{\nu_e}_{\mu} = \overline{(\nu_e)}_L \gamma_{\mu} (\nu_e)_L$$

Polarization angle rotation of CMB photons

$$\Delta \alpha = \frac{1}{2} \frac{\beta}{M^2} \int J_{\eta}^{\nu_e} d\eta = \frac{1}{2} \frac{\beta}{M^2} \int \Delta n_{\nu_e} dt \qquad \qquad \Delta n_{\nu_e} \equiv n_{\nu_e} - n_{\bar{\nu}_e}$$

 \succ In the literature, v_e asymmetry is parametrized by

CB from Neutrino Asymmetry

CB rotation angle

$$\Delta \alpha = 0.03\beta \left(\frac{\xi_{\nu_e} T_{\gamma 0}^3}{M^2}\right) \int_0^{z_D} \frac{(1+z)^2}{H(z)} dz \approx 0.03\beta \left(\frac{\xi_{\nu_e} T_{\gamma 0}^3}{M^2 H_0}\right) \frac{2}{3} (1+z_D)^{3/2}$$

 $T_{\gamma} = T_{\gamma 0}(1+z), \quad dt = \frac{dR}{HR} = -\frac{dz}{(1+z)H},$

where we have used

$$H(z) = H_0(1+z)^{3/2}$$

Recently, by measuring the primordial helium abundance in the metal poor galaxies, the EMPRESS survey has found a tension with SM prediction, indicating a remarkably nonzero v_e degeneracy parameter

 $\xi_{\nu_e} = 0.05^{+0.03}_{-0.02}$

A. Matsumoto et al., APJ**941**(2022)167; A.-K. Burns et al. 2206.00693; ^{2023/5/5} M. Escudero et al. 2208.03201

CB from Asymmetric Dark Matter

- Evidence for dark matter
- Rotation Curves of Spiral Galaxies

• Gravitational Lensing

• Bullet Cluster

CB from Asymmetric Dark Matter

> It is interesting to consider CB from a fermionic DM current

> Source of CB is
$$J_0^{\chi} = \Delta n_{\chi} = n_{\chi} - n_{\bar{\chi}}$$

Many models for producing ADM has been proposed in the literature. Especially when M_x ~ 5 GeV, ADM can help explain the density ratio between visible and dark matters.

S. Nussinov (1985); D.B. Kaplan (1992); D.E. Kaplan+(2009); K.M. Zurek(2014);

Here we do not specify the ADM production mechanism and assume it can induce CB via its coupling with photon CS term.

CB from Asymmetric Dark Matter

Recall the CB rotation angle

$$\Delta \alpha \approx \frac{1}{2} \frac{\beta}{M^2} \int J_{\eta} d\eta = \frac{1}{2} \frac{\beta}{M^2} \int \Delta n \, dt$$

> For ADM, $\Delta n_{\chi} = n_{\chi}$, and cosmological DM abundance is parametrized by

$$\Omega_{\chi 0} = \frac{\rho_{\chi 0}}{\rho_{c0}} = \frac{8\pi G M_{\chi} n_{\chi 0}}{3H_0^2} \quad \text{with} \quad \left[\rho_{\chi 0} = M_{\chi} n_{\chi 0} \right] \quad \left[\rho_{c0} = 3H_0^2 / (8\pi G) \right]$$

> According to cosmological evolution, $n_{\chi} = (1+z)^3 n_{\chi 0}$ and $H = (1+z)^{3/2} H_0$

$$\Delta \alpha = \frac{1}{2} \frac{\beta}{M^2} \frac{\rho_{c\,0} \Omega_{\chi\,0}}{M_\chi} \int_0^{z_D} (1+z)^3 \frac{dz}{H(1+z)} \approx \frac{1}{2} \frac{\beta}{M^2} \frac{3H_0 \Omega_{\chi\,0}}{8\pi G M_\chi} \frac{2}{3} (1+z_D)^{3/2}$$
$$= 5.24 \times 10^{-3} \beta \left(\frac{1.77 \,\text{GeV}}{M}\right)^2 \left(\frac{5 \,\text{GeV}}{M_\chi}\right)$$

5 GeV ADM: Constraints

> For the conventional ADM with $M_{\chi} \simeq 5$ GeV, the model can suffer exp. constraints from CMB power spectrum and DM direct searches.

Too Weak !

- CMB constraint: the interaction between ADM χ and CMB photons would cause power suppression at high multipoles and dark BAO:
- Computation of Feynman diagram gives the temperature-dependent χ-γ cross section

$$\langle \sigma v_{\mathrm{M} \otimes \mathrm{I}} \rangle_{\chi \gamma} \simeq \frac{3\zeta(5)}{2\pi\zeta(3)} \frac{\beta^2 T_{\gamma}^2}{M^4} = 0.412 \left(\frac{\beta^2 T_{\gamma}^2}{M^4}\right)$$

Data from CMB TT and EE modes constrain

$$\langle \sigma v_{\text{Møl}} \rangle_{\chi\gamma}(T_{\gamma}^{0}) \lesssim 6 \times 10^{-40} \left(\frac{M_{\chi}}{\text{GeV}}\right) \text{cm}^{2}, \text{ at } 68\% \text{ C.L.}$$
$$\frac{\beta}{M^{2}} \lesssim 8.24 \times 10^{6} \text{ GeV}^{-2} \left(\frac{M_{\chi}}{\text{GeV}}\right)^{1/2}$$

2 R.J. Wilkinson et al (2013) 第二届

5 GeV ADM: Constraints

- DM direct searches
- Effective ADM-quark interaction

$$\mathcal{L}_{\chi q} = -\sum_{q} \frac{1}{m_{V_q}^2} \bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^5 q \qquad \frac{1}{m_{V_q}^2} = \frac{3\alpha}{8\pi} \frac{\beta}{M^2} Q_q^2 \ln \frac{\Lambda^2}{m_q^2}$$

 p_1

 $-k_2$

10

Flavor universal: Quarks only

 $l-p_2$

 p_2

Velocity and momentum suppressed spin-dependent DM-nucleon DD signal

 \succ RG running \rightarrow Mixing with $\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}q$.

5 keV Warm ADM

- > Lower the ADM mass to warm DM range with $M_{\chi} = 5 \text{ keV}$
- > CB angle from CMB $\Delta \alpha = 5.24 \times 10^{-3} \beta \left(\frac{1.77 \text{ TeV}}{M}\right)^2 \left(\frac{5 \text{ keV}}{M_{\chi}}\right)$
- ➤ Weak Constraints:

Evade all Constraints!

- Free from DM DD constraints;
- DM phase-space distribution in dSphs $\rightarrow M_{\chi} \gtrsim 1$ keV; A. Boyarsky et al (2008)
- Detection of CMB spectral distortions from FIRAS data

$$\frac{\beta}{M^2} \lesssim \left(\frac{M_\chi}{5\,{\rm keV}}\right)^{1/2} \left(\frac{1}{1.2\times 10^{-4}\,{\rm TeV}}\right)^2 ~\rm Y. \label{eq:mass_start}$$

Y. Ali-Haimoud et al (2015)

A. Boyarsky et al (2009)

- Lyman- α forest;
- Matter power spectrum;

M. Escudero et al (2018)

- Cosmic Birefringence is a remarkable parity-violating effect, which is beyond the standard cosmology prediction;
- Recently, new technique breakthrough in CMB data analysis leads to a hint towards a nonzero CB rotation angle;
- We provide a new explanation towards the CMB CB, which is caused by the CS-like coupling between a fermion current and photons. As a result, the source for CB is the fermion number asymmetry;
- ➢ By identifying fermions as cosmological electron neutrinos, CB rotation angle can be explained by the v_e asymmetry indicated recently by the EMPRESS survey;
- ➢ For the ADM case, the conventional ADM with M_χ ≈ 5 GeV is excluded by DM DD data from LZ, while the warm ADM of M_χ ≈ 5 keV can satisfy all constraints.
 THANK YOU]

会.杭州