

2212.02286 2111.04000 2012.09751 2006.11837 1912.09904

Probing Boosted Dark Matter in Direct Detections

Cosmic Ray Boosted Dark Matter

Inelastic Effects in Earth Stopping

Conclusions

Outline

Mass range: ~ 10^{-22} eV to ~ 10 solar Mass

Particle-like DM

Accelerator

- Can only produce DM
- Model dependent
- LHC, Belle-II, Faser...

Direct Detection

- Local DM Distribution
- Background
- CDEX, PandaX, Xenon, DAMIC...

Indirect Detection

- DM distribution in halos
- Product propagation
- DAMPE, FermiLAT, AMS-02...

Wave-like DM

Quan. Tech. / Astronomy

- Ultralight bosonic DM
- Cavity, Atomic Clock...

Compact Object DM

Gravitational Wave/Pulsar Timing

- Primordial Black Hole
- •LISA, TianQin, Taiji...

The Search for Dark Matter Is Dramatically Expanding !

Name	Detector	Target	Active Mass	Fiducial Live Exposure	Status	Start Ops (after construction)	End Ops	Location of Experiment
XMASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke
XENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS
XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS
XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ended	2017	2019	LNGS
XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction	2021	2025	LNGS
LUX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF
LUX (Ionization)	TPC Ionizonly	LXe	250 kg		Ended	2017	2019	SURF
LZ	TPC	LXe	8,000 kg	20 t yr	Construction	2021	2025	SURF
PandaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL
PandaX-4T	TPC	LXe	4,000 kg	20 t yr	Construction	2021	2025	CJPL
LZ HydroX	TPC	LXe+H2	8.000 kg		R&D	2026		SURF
Darwin / US G3	TPC	LXe	40,000 kg	200 t yr	Planning	2028	2033	LNGS / SURI
DEAP-3600	Scintillator	LAr	3,300 kg		Running	2016	202X	SNOLAB
DarkSide-50	TPC	LAr	46 kg	46 kg year	Ended	2013	2019	LNGS
Darkside-LM (Ionization)	TPC Ionizonly	LAr	46 kg		Ended	2018	2019	LNGS
Darkside-20k	TPC	LAr	30 t	200 t yr	Construction	2025	2030	LNGS
ARGO	TPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB
DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS
ANAIS-112	Scintillator	Nat	112 kg	Goal 5 years	Running	2017	2022	Canfranc
COSINE-100	Scintillator	Nal	106 kg	oour o yours	Running	2016	2021	VanaVana
COSINE-200	Scintillator	Nal	200 kg		Construction	2010	2025	YangYang
COSINE 200 South Bala	Scintillator	Nal	200 kg		Diagoing	2022	2025	Fangrang South Dolo
COSINE-200 South Fold	Relemeter Scietillator	Nal	200 kg		Planning	2023	2	South Pole
COSINOS	Scientillates	Nal	E ka		Construction	2023	2022	LNGS
SABRE POP	Scintillator	Nal	5 kg	1	Construction	2021	2022	LNGS
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL
CDEX-10	Ionization (77K)	Ge	10 kg	103 kg d	Running	2016	?	CJPL
CDEX-100711	Ionization (77K)	Ge	100-1000 kg		Planning	2028		CJPL
SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan
CDMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan
CDMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	SNOLAB
SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Construction	2020	2022	SNOLAB
SuperCDMS SNOLAB	Cryo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB
EDELWEISS III	Cryo Ionization	Ge	20 kg		Ended	2015	2018	LSM
EDELWEISS III (High Field)	Cryo Ionization HV	Ge	33 g		Running	2019		LSM
CRESST-II	Bolometer Scintillation	CaWO4	5 kg		Ended	2012	2015	LNGS
CRESST-III	Bolometer Sciptillation	CaWOA	240 g	i i i	Ended	2016	2018	INGS
CRESST-III (HW Tests)	Bolometer Scintillation	CaWO4	240 g		Running	2020	2010	LNGS
PICO-2	Bubble Chamber	C3F8	2 kg		Ended	2013	2015	SNOLAB
PICO-40	Bubble Chamber	C3F8	35 kg		Construction	2020	2010	SNOLAB
0100 40	Bubble Chamber	0531 0358	50 kg		Ended	2012	2017	CNICLAR
PICO-500	Bubble Chamber	C3F8	430 kg		Construction	2013	2017	SNOLAB
DDIET	Cas Dissetional	054	0.141		Ended			Bauthu
	Gas Directional	CF4	0.14 kg	1544	Ended	2042	2017	Boulby
NEWAGE-030	Gas Directional	CH4	14 g	4.5 Kg d	Ended	2013	2017	1.014
NEWS-G	Gas Drift	CH4			Ended	2017	2019	LSM CHOLAD
NEWS-G	Gas Drift	CH4			Construction	2020	2025	SNOLAB
DAMIC	CCD	Si	2.9 g	0.6 kg d	Ended	2015	2015	SNOLAB
DAMIC	CCD	Si	40 g Si		Ended	2017	2019	SNOLAB
DAMIC100	CCD	Si	100 g Si		Not Built			SNOLAB
DAMIC-M	CCD Skipper	Si	1 kg Si	6	Construction	2021	2024	LSM
SENSEI	CCD Skipper	Si	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g
SENSEI	CCD Skipper	Si	100 g Si		Construction	2021	2023	SNOLAB

about 20

WIMP

- **1.** Boosted Dark Matter: astrophysical sources...
- 2. Low Threshold Detectors: electron/ semiconductors/superconductor...
- 3. New effects: bremsstrahlung/Migdal/phonon...

Cosmic ray upper-scattering DM

1810.07705, 1810.10543, 1912.09904, 2005.09480, 2006.12767, 2009.00353,

Cosmic beam-dump DM

1905.05776, 2006.11837, 2012.09751, 2211.11469, 2212.02286, 2301.03010

...

2. Cosmic Ray Boosted Dark Matter

Power law:

Components:

2. Cosmic Ray Boosted Dark Matter

ORMA

Cosmic ray upper-scattering DM

2. Cosmic Ray Boosted Dark Matter

Wang, Wu, Yang, Zhou, Zhu, 1912.09904

2. Cosmic Ray Boosted Dark Matter

Liang, Su, Wu, Zhu, 2306.xxxx

VORMA

Cosmic beam-dump DM

 $p+N \rightarrow Mesons \rightarrow DM$

 $p+N \rightarrow P+N + DM$

 $p+N \rightarrow DM$

Wang, Su, Wu, Yang, Zhu, 2006.11837

VORMAL

2. Cosmic Ray Boosted Dark Matter

Flambaum, Su, Wu, Zhu, 2012.09751

Su, Wu, Zhou, Zhu, 2212.02286

• DM-nucleus ES

• DM-nucleus DIS

Omar Benhar, et al

QE Scattering

The final state can be written as :

$$\mathcal{X}^{\mu
u} = \sum ig\langle \chi ig| \mathcal{J}^{\mu}_{\chi} ig| \chi' ig
angle ig\langle \chi' ig| \mathcal{J}^{
u}_{\chi} ig| \chi ig
angle;$$

$$W^{\mu
u} = \sumig\langle Aig|\mathcal{J}^{\mu}_Aig|Xig
angle \langle Xig|\mathcal{J}^{
u}_Aig|A
angle \delta^{(4)}ig(p_X+k'-p_0-kig)$$

 $\mathcal{J}^{\mu}_{\chi}(\mathcal{J}^{\nu}_{A})$ is DM (hadron) current operator: Scalar, Vector or etc.

The tensor describes the interactions of *i*-th nucleon in free space.

$$W^{\mu
u} = \sum_{i} \int \mathrm{d}^{3}\vec{p} \, \mathrm{d}E \underbrace{\tilde{W}_{i}^{\mu
u}}_{i} \underbrace{\frac{1}{E_{\vec{p}}E_{\vec{p}'}}}_{E_{\vec{p}'}} \underbrace{P(\vec{p},E)\delta(\omega - E + m_{N} - E_{0}'),}_{ ext{Spectral Function (probability)}}$$

$$P(ec{p},E) = \sum_{Y} |\langle A \mid Y, -ec{p}
angle |N, ec{p}
angle|^2 \delta(E-m_N+E_0-E_Y).$$

Nuclear Physics

Over-estimated by about 1 order

Light DM physics is rich

Precision Calculations of DD is essential

Backup-1

Model, Boosted and Attenuation Effects

Simplified Hadrophilic DM model

$$\mathcal{L} = i\bar{\chi} \left(\not{\!\!D} - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_s^2 S^2 - (g_{\chi} S \bar{\chi}_L \chi_R + g_q S \bar{q}_L q_R + \text{h.c.})$$

couple to quark

UV model, see e.g. 1507.00009, 1712.01847

Constraints:

Pion decay: $Br(\pi \rightarrow \gamma \chi \chi) \lesssim 10^{-7}$ Kaon invisible decay @ E787/E949: $K \to \pi \nu \overline{\nu}$ $pN \rightarrow \eta \rightarrow \pi^0 S(\rightarrow \chi \overline{\chi})$ MiniBooNE (downstream): $g_u > (2 \times 10^{-8}) (\frac{m_S}{\text{GeV}})^{-3/2}$ BBN: Xenon1T DM-nucleus scattering $\operatorname{Br}\left(\eta \to \pi^{0}S\right) = \frac{c_{S\pi^{0}\eta}^{2}g_{u}^{2}B^{2}}{16\pi m_{\pi}\Gamma_{\pi}}\lambda^{1/2}\left(1, \frac{m_{S}^{2}}{m^{2}}, \frac{m_{\pi^{0}}^{2}}{m^{2}}\right)$ $\sim 10^{-5}$

With the data from PAMELA, the fitting formula of the Local Interstellar Spectra (LIS) of CRs are parameterized

• $\frac{T_i}{R} = Ze$

• $\frac{d\Phi_i}{dT_i} = 4\pi \frac{d\Phi_i}{dR} \frac{dR}{dT_i}$

• Local Interstellar Spectra (LIS) of CRs are parameterized

$$\frac{d\Phi_i}{dR} \times R^{2.7} = \begin{cases} \sum_{j=0}^5 a_j R^j & R \le 1 \text{ GV}, \\ b + \frac{c}{R} + \frac{d_1}{d_2 + R} + \frac{e_1}{e_2 + R} + \frac{f_1}{f_2 + R} + gR & R > 1 \text{ GV}, \end{cases}$$

	a_0	a_1	a_2	a_3	a_4	a_5	b	с
p	94.1	-831	0	16700	-10200	0	10800	8500
He	1.14	0	-118	578	0	-87	3120	-5530
	d_1	d_2	e_1	e_2	f_1	f_2	g	
\mathbf{p}	-4230000	3190	274000	17.4	-39400	0.464	0	
He	3370	1.29	134000	88.5	-1170000	861	0.03	

$$d\Gamma_{CR\to\chi} = \sum_i \frac{\rho_{\chi}}{m_{\chi}} \times \frac{d\sigma_{\chi i}^0}{dT_{\chi}} G_i^2 (2m_{\chi}T_{\chi}) \times \frac{d\Phi_i}{dT_i} dT_i dT_{\chi} dV$$

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \sum_{i} \int \frac{d\Omega}{4\pi} \int dl \int_{T_{i}^{min}}^{\infty} \frac{\rho_{\chi}}{m_{\chi}} \frac{d\sigma_{\chi i}^{0}}{dT_{\chi}} G_{i}^{2} (2m_{\chi}T_{\chi}) \frac{d\Phi_{i}}{dT_{i}} dT_{i} = D_{\text{eff}} \frac{\rho_{\chi 0}}{m_{\chi}} \sum_{i} \sigma_{\chi i} \int_{T_{i}^{\min}}^{\infty} \frac{1}{T_{\chi}^{\max}(T_{i})} \frac{d\Phi_{i}}{dT_{i}} dT_{i}$$

Boosted effect: elastic case

Boosted effect: inelastic case

Step-1. Differential Cosmic Ray Flux

$$\frac{\mathrm{d}\phi_p\left(T_p,h\right)}{\mathrm{d}T_p} = y_p(h) \frac{\mathrm{d}\phi_p\left(T_p,h_{\max}\right)}{\mathrm{d}T_p}$$
Dilution factor: $y_p(h) = \exp\left(-\sigma_{pN}\int_h^{h\max}\mathrm{d}\tilde{h}n_N(\tilde{h})\right)$

$$h_{max} = 180 \mathrm{km}$$

$$\sigma_{pN} \simeq 255 \mathrm{ mb}$$

CRMC: simulate the collision of incoming CRs with the nitrogen

Step-2. attenuation of ADM flux

Backup-2

Quasi-elastic and Deep inelastic Scattering

DM-nucleus Quasi-elastic (QE) Scattering

- The calculation of hadron tensor
 - \blacktriangleright At moderate momentum transfers: $|\mathbf{q}| \lesssim 0.5 \text{ GeV}$

Nuclear Many-Body Theory (NMBT): using nonrelativistic wave function to describe the initial and final states and expanding in the current operator in powers of $|\mathbf{q}|/m_N$, m_N is the nucleon mass.

> At higher momentum transfers

The description of the final states $|X\rangle$ in the terms of nonrelativistic nucleons is no longer possible. In this regime, the calculation require a set of simplifying assumptions, allowing one to take into account the relativistic motion of final state particles , and inelastic processes leading to the appearance of hadrons other than protons and neutrons. An effective calculation way is the impulse approximation.

正德厚生 茑學敏行

DM-nucleus Quasi-elastic Scattering

> Spectral function:

$$P(ec{p},E) = \sum_Y |\langle A \mid Y, -ec{p}
angle |N, ec{p}
angle|^2 \delta(E-m_N+E_0-E_Y).$$

The probability of removing a nucleon of momentum (p) from ground state of the nucleus (A) leaving the residual nucleus (X) with excitation energy (E), can be obtain from *ab initio* many-body calculations. For example,

$$P(p,E)_{{}^{16}O
ightarrow n+{}^{15}O^{\star}} ext{ or } P(p,E)_{{}^{16}O
ightarrow p+{}^{15}N^{\star}}$$

正德厚生 篤學敏行

DM-nucleus Quasi-elastic Scattering

Therefore, the differential cross section is given by

$$rac{\mathrm{d}\sigma_A}{\mathrm{d}E'_\chi\mathrm{d}\Omega} = Zrac{\mathrm{d}\sigma_p}{\mathrm{d}E'_\chi\mathrm{d}\Omega} + (A-Z)rac{\mathrm{d}\sigma_n}{\mathrm{d}E'_\chi\mathrm{d}\Omega}$$

• Vector:

$$\frac{\mathrm{d}\sigma_{N}}{\mathrm{d}E'_{\chi}\mathrm{d}\Omega} = \frac{g_{N}^{2}g_{\chi}^{2}}{16\pi^{2}(q^{2}-m_{V}^{2})^{2}} \frac{\left|\vec{k}\right|}{|\vec{k}||\vec{q}|} \int \mathrm{d}|\vec{p}|\mathrm{d}\phi_{p}|\mathrm{d}E\frac{|\vec{p}|}{E_{\vec{p}}}P(\vec{p},E)\theta(|\vec{p}+\vec{q}|-p_{F})L_{\mu\nu}\tilde{W}_{N}^{\mu\nu}.$$
Pauli blocking Model depended
• Scalar:

$$\frac{\mathrm{d}\sigma_{N}}{\mathrm{d}E'_{\chi}\mathrm{d}\Omega} = \frac{g_{\chi}^{2}g_{N}^{2}}{16\pi^{2}(q^{2}-m_{S}^{2})^{2}} \frac{\left|\vec{k}\right|}{|\vec{k}||\vec{q}|} \int \mathrm{d}|\vec{p}|\mathrm{d}\phi_{p}|\mathrm{d}E\frac{|\vec{p}|}{E_{\vec{p}}}P(\vec{p},E)\theta(|\vec{p}+\vec{q}|-p_{F})L_{S}\tilde{W}_{N}^{S}}$$

$$\neq \& B \neq \& \uparrow$$

DM-nucleus Deep Inelastic Scattering(DIS)

Bjorken scaling variable

$$x=rac{Q^2}{2m_A
u}$$

 $Q^2 = -q^2 = -2m_l^2 + 2p_1 \cdot p_3 = 2E(Eu) - 2kk'\cos heta - 2m_{\chi}^2;$

正德厚 旅 行

 $\chi(p_3)$

 $q'(p_4)$

DM-nucleus Deep Inelastic Scattering

• Differential Cross Section

$$d\sigma = \int_{0}^{1} f(\xi) d\xi \frac{|\mathcal{M}|^{2} (2\pi)^{4} \delta^{4}(\xi p_{2} + q - p_{4})}{4\sqrt{(p_{1} \cdot \xi p_{2})^{2} - (\xi m_{A} m_{\chi})^{2}}} \frac{d^{3}\vec{k}'}{(2\pi)^{3} 2E'} \frac{d^{3}\vec{p}_{4}}{(2\pi)^{3} 2E_{4}}$$

$$= \frac{d\nu dQ^{2}}{64\pi m_{A}^{2} \nu (E^{2} - m_{\chi}^{2})} \int_{0}^{1} \frac{f(\xi)}{\xi} d\xi \overline{\mathcal{M}(\xi)} |^{2} \delta(\xi - x)$$
Spin-average Amplitude
Parton Distribution Function (PDF)

正德厚生 乌墨敏行

Results

- A typical Accelerating DM: ADM with scalar mediator $T_\chi\gtrsim 0.25~{
 m GeV}$
- A simple attenuation model: the DM scatters at most once.

The survival probability :

$$p_{ ext{surv}}(T_\chi) = \exp \Biggl(- \sum_i^{ ext{species}} rac{d_{ ext{eff},i}(\cos heta)}{ar{\lambda}_i(T_\chi)} \Biggr)$$

Average mean free path : $ar{\lambda}_i(T_\chi) = [\sigma_i(T_\chi)ar{n}_i]^{-1}$

Element	А	$m_A \; [\text{GeV}]$	$\bar{n} \mathrm{[cm^{-3}]}$	Core	Mantle
Oxygen	16	14.9	3.45×10^{22}	0.0	0.440
Silicon	28	26.1	$1.77 imes 10^{22}$	0.06	0.210
Magnesium	24	22.3	$1.17 imes 10^{22}$	0.0	0.228
Iron	56	52.1	$6.11 imes 10^{22}$	0.855	0.0626
Calcium	40	37.2	$7.94 imes 10^{20}$	0.0	0.0253
Sodium	23	21.4	$1.47 imes 10^{20}$	0.0	0.0027
$\operatorname{Sulphur}$	32	29.8	2.33×10^{21}	0.019	0.00025
Aluminium	27	25.1	$1.09 imes 10^{21}$	0.0	0.0235

ArXiv: 1611.05453

Effective distance:
$$d_{\text{eff},i}(\cos\theta) \approx \begin{cases} 2 \int_{R_E \sin\theta}^{R_E} \frac{n_i(r)}{\bar{n}_i} \frac{r dr}{\sqrt{r^2 - R_E^2 \sin^2 \theta}} & \theta \in [0, \pi/2] \\ \int_{R_E - l_D}^{R_E} \frac{n_i(r)}{\bar{n}_i} dr & \theta \in [\pi/2, \pi]$$
正德 厚生 為學紙竹

Earth-stopping model

M1: "Signal Scatter"

$$rac{\mathrm{d}\Phi_{\chi}^{z}}{\mathrm{d}T_{\chi}^{z}} = \int \mathcal{P}_{\mathrm{surv}}(T_{\chi},\cos heta) rac{\mathrm{d}\Phi_{\chi}}{\mathrm{d}T_{\chi}\mathrm{d}\Omega}\mathrm{d}\Omega$$

The survival probability :

$$\mathcal{P}_{ ext{surv}} = \exp\left(-\sum_{i}^{ ext{species}} \frac{d_{ ext{eff},i}(\cos heta)}{\overline{\lambda_i(T_\chi)}}
ight)$$

Average mean free path : $\overline{\lambda}_i(T_\chi) = [\sigma_i(T_\chi)\overline{n}_i]^{-1}$

M2: "Straight Lines"

$$\frac{\mathrm{d}\Phi_{\chi}^{z}}{\mathrm{d}T_{\chi}^{z}} = \int \underbrace{\frac{\mathrm{d}T_{\chi}}{\mathrm{d}T_{\chi}^{z}}}_{\mathbf{q}} \frac{\mathrm{d}\Phi_{\chi}}{\mathrm{d}T_{\chi}\mathrm{d}\Omega} \mathrm{d}\Omega$$

By solving the energy loss function:

$$rac{\mathrm{d}T_\chi^z}{\mathrm{d}z} = -\sum_i n_i(r) \int_0^{\omega_\chi^{\mathrm{max}}} \mathrm{d}\omega_\chi rac{\mathrm{d}\sigma_{i\chi}}{\mathrm{d}\omega_\chi} \omega_\chi.$$

