

宇宙线加速的非弹性暗物质的直接探测

康现伟
 xwkang＠bnu．edu．cn

北京师范大学

第二届地下和空间粒子物理与宇宙物理前沿问题研讨会，千岛湖，2023年5月7－12日

Revising inelastic dark matter direct detection by including the cosmic ray acceleration

－引言

- 非弹性暗物质的有效相互作用
- vDM和CRDM的探测
- 目前测量对参数的限制（PandaX－4T为例）
- 结论和展望
－DM：dark matter
－vDM：virialized DM，低速
－CDRM：cosmic ray accelerated vDM
－DD：direct detection

引言

1．非引力证据缺失，与标准模型粒子如何相互作用
2．XENON1T和PandaX－4T的测量已将DM－proton弹性散射截面推到中微子地板［XENON，PRL 121 （2018）111302；PandaX－4T，PRL127 （2021）261802］

3．非相对论 vDM对探测阈的限制，如质量为 5 GeV 以下的暗物质成为 xenon型探测器的盲区

4．若要探测质量䢃裂为 100 keV 量级的暗物质 χ_{1} 和 χ_{2} ，传统vDM质量需要重到TeV量级［PandaX－II，PRD 96 （2017）102007］

Inelastic dark matter（hep－ph／0101138）was originally proposed to explain DAMA not through a change in couplings，but rather through a change in kinematics．

cosmic ray accelerated vDM (CRDM)

Cosmic ray accelerated inelastic DM detection scenario: $p+\chi_{1} \rightarrow p^{\prime}+$ $\chi_{2} \rightarrow p^{\prime}+\chi_{1}+V$. By this mechanism, the final χ_{1} is accelerated
[p denotes the CR proton or helium the prime is used to distinguish the same particles in the initial and final states the inelastic DM χ_{1} and χ_{2} are the ground state and excited state, respectively V is the mediator between SM and DM
L N is the target nucleus inside the underground detector

非弹性暗物质的有效相互作用

The common nucleon－ V interactions are

$$
\mathcal{L}_{V N}=\bar{N} \gamma^{\mu}\left(C_{N}^{v}+C_{N}^{a} \gamma^{5}\right) N V_{\mu} .
$$

The completed Lagrangian to describe $p+\chi_{1} \rightarrow p^{\prime}+\chi_{2}$ process is $\mathcal{L}_{V N}+\mathcal{L}_{V D}$

We consider both fermionic DM interaction and scalar dark matter interaction for $\mathcal{L}_{V D}$

$$
\begin{aligned}
& \mathcal{L}_{1}^{f}=\left[\overline{\chi_{2}} \gamma_{\mu}\left(C_{\chi}^{v}+C_{\chi}^{a} \gamma^{5}\right) \chi_{1}+h . c .\right] V^{\mu}, \\
& \mathcal{L}_{2}^{f}=\frac{1}{\Lambda_{E(M)}} \bar{\chi}_{2} \sigma_{\mu \nu} \Gamma_{E(M)} \chi_{1} F_{V}^{\mu \nu}, \\
& \mathcal{L}_{1}^{s}=g_{\chi}\left(\chi_{1} \partial^{\mu} \chi_{2}-\chi_{2} \partial^{\mu} \chi_{1}\right) V_{\mu}, \\
& \mathcal{L}_{2}^{s}=\frac{1}{\Lambda_{s}^{2}}\left(\partial_{\mu} \chi_{2} \partial_{\nu} \chi_{1}\right) F_{V}^{\mu \nu} .
\end{aligned}
$$

(a) \mathcal{L}_{1}^{f}.

(b) \mathcal{L}_{2}^{f}

The integrated cross section of process $p \chi_{1} \rightarrow p^{\prime} \chi_{2}$ as a function of incoming proton energy E_{p}

(a) \mathcal{L}_{1}^{f}

(b) \mathcal{L}_{2}^{f}

The integrated cross section of process $p \chi_{1} \rightarrow p^{\prime} \chi_{2}$ as a function of incoming proton energy E_{p}

vDM和CRDM探测

Traditional detection of the virialized DM

For a mass splitting δ between χ_{1} and χ_{2} ，a minimum velocity

$$
v_{\min }(Q)=\frac{1}{\sqrt{2 m_{\mathcal{T}} Q}}\left(\frac{m_{\mathcal{T}} Q}{\mu_{\chi N}}+\delta\right)
$$

with Q energy recoil，$m_{\mathcal{T}}$ target mass，μ reduced mass
The differential event rate of scattering between DM and the target nucleus per unit detector mass with respect to the recoil energy Q ：

$$
\frac{\mathrm{d} \mathcal{R}}{\mathrm{~d} Q}=\sum_{\mathcal{T}} \frac{\xi_{\mathcal{T}}}{m_{\mathcal{T}}} \int_{T_{\chi}\left[v_{\min }(Q)\right.} \quad \frac{d \phi_{\chi}}{d T_{\chi}} \frac{\mathrm{d} \sigma_{\chi \mathcal{}}}{\mathrm{d} Q} d T_{\chi} . \quad \text { DM flux }
$$

The total event rate $\mathcal{R}=\int_{0}^{\infty} \epsilon(Q) \frac{\mathrm{d} \mathcal{R}}{\mathrm{d} Q} d Q$ ．efficiency
Spin independent part

$$
\frac{\mathrm{d} \sigma_{\chi \mathcal{T}}^{\mathrm{SI}}}{\mathrm{~d} Q}=\frac{\mathrm{d} \sigma_{\chi p}^{\mathrm{SI}}}{\mathrm{~d} Q} \times \frac{\mu_{\mathcal{A}}^{2}}{\mu_{p}^{2}} \times\left[\mathcal{Z}+\frac{f_{n}}{f_{p}}(\mathcal{A}-\mathcal{Z})\right]^{2} \times F^{F^{2}(Q, \mathcal{A}, \mathcal{Z})} \begin{aligned}
& \text { Helm type } \\
& \text { form factor }
\end{aligned}
$$

$$
\frac{d \phi_{\chi_{1}}^{\mathrm{MW}}}{d T_{\chi_{1}}}=\frac{\rho_{0}}{m_{\chi_{1}}} \times D_{\mathrm{eff}} \times \sum_{i=p, \mathrm{He}} \int d E_{i} \frac{d \phi_{i}}{d E_{i}} G_{i}^{2}\left(2 m_{\chi_{1}} T_{\chi_{1}}\right) \frac{d \sigma_{p_{\chi_{1} \rightarrow p^{\prime} \chi_{1} V}}}{d T_{\chi_{1}}}
$$

The $G_{i}^{2}\left(Q^{2}\right)$ here is simply taken in its dipole form:

$$
G_{i}^{2}\left(Q^{2}\right)=\left[1+\frac{Q^{2}}{\Lambda_{i}^{2}}\right]^{-4} \quad \begin{array}{ll}
\Lambda_{p}=770 \mathrm{MeV} \\
\Lambda_{\mathrm{He}}=410 \mathrm{MeV}
\end{array}
$$

Considering that the form factor relates $\sigma_{\chi p}$ to $\sigma_{\chi \mathcal{T}}$, the inelastic cross section of DM-target scattering is:

$$
\begin{equation*}
\frac{d \sigma_{\chi \mathcal{T}}}{d Q}\left(m_{\chi 1}, \delta, m_{V}, Q\right)=\left.\frac{d \sigma_{\chi \mathcal{T}}}{d Q}\right|_{\mathrm{EFT}} \times \frac{\mathcal{M}_{\chi p}^{2}\left(m_{\chi 1}, \delta, m_{V}, Q\right)}{\mathcal{M}_{\chi p, \mathrm{EFT}}^{2}} \tag{22}
\end{equation*}
$$

where the effective operator cross section $\left.\frac{d \sigma_{\chi T}}{d Q}\right|_{\text {EFT }}$ is obtained with the publicly available numerical code LikeDM-DD [33]. $\mathcal{M}_{\chi p}^{2}\left(m_{\chi_{1}}, \delta, m_{V}\right)$ are calculated in Appendix B, but $\mathcal{M}_{\chi p, \text { EFT }}^{2}$ is used with $\delta=0$ and the limit $m_{V} \gg Q$.

$$
\frac{d \mathcal{R}}{d Q}=\sum_{\mathcal{T}} \frac{\xi_{\mathcal{T}}}{m_{\mathcal{T}}} \int_{T_{\min }}^{\infty} d T_{\chi_{1}} \frac{d \sigma_{\chi_{1} \mathcal{T}}}{d Q} \frac{d \Phi_{\chi_{1}}^{\mathrm{MW}}}{d T_{\chi_{1}}}, \text { DRU or } \mathrm{keV}^{-1} \mathrm{~kg}^{-1} \mathrm{day}^{-1}
$$

FTG. 6. (a) Comparison of vDM and CRDM fluxes. Both vDM and CRDM fluxes are obtained by using $\overline{\chi_{2}} \gamma^{\mu} \chi_{1} V_{\mu}$ interaction with $m_{\chi_{1}}=10 \mathrm{MeV}, m_{V}=100 \mathrm{keV}$, and $C_{N}^{a}=10^{-3}$. The value of $D_{\text {eff }}$ for CRDM is fixed to 1 kpc as a default value. (b) Spectra of CRDM with the VV interaction. Three benchmarks of DM mass 1 MeV (red lines), 100 MeV (green lines), and 1 GeV (red lines) are presented. We also plot three different mass splittings, $\delta=0$ (solid lines), $\delta=1 \mathrm{MeV}$ (dashed lines), and $\delta=10 \mathrm{MeV}$ (dash-dotted lines).

特点: (1) those non-degenerated curves show

 sharp peaks at T_{sp}- the CRDM energy spectrum is the product of the distribution $d \sigma_{p \chi_{1}} / d T_{\chi_{1}}$ and CR energy spectrum.
- the cross section is flat at high energy, but the δ contribution dominates $d \sigma_{p \chi_{1}} / d T_{\chi_{1}}$ in the lower energy region.
- Thus in the small energy region $T_{\chi_{1}}<T_{\mathrm{sp}}$, the spectrum is strongly affected by $d \sigma_{p \chi_{1}} / d T_{\chi_{1}}$
(2) δ can cause a sharp peak $T_{\text {sp }}$ in the spectrum toward higher energy but with a decline of total flux.

(a) VV and AA interactions.

(b) ED and MD interactions.

FIG. 8. Detection rate $d \mathcal{R} / d Q$ (DRU or $\mathrm{keV}^{-1} \mathrm{~kg}^{-1}$ day $^{-1}$) of fermionic CRDM $\chi-$ xenon scattering for \mathcal{L}_{1}^{f} (left) and \mathcal{L}_{2}^{f} (right). The mass degenerated cases $\delta=0$ are represented as solid lines, while the dashed lines are for $\delta=20 \mathrm{MeV}$.
we use $\mathcal{R} \sim 4 / 0.63 /$ tonne/year projected onto the (δ, C_{N}) and ($m_{\chi_{1}}, \delta$) planes to show the detection capability of PandaX-4T.

1. AA interaction can give the most stringent limit on C_{N} while the higher dimensional operators, especially MD, have weaker limit
2. A turning point then appears in all the interactions, and the limits behave differently at the smaller and larger $m_{\chi_{1}}$ regions.
3. PandaX-4T provides the most stringent 21 limit for $A A$ in the large $m_{\chi_{1}}$ region but for VV in the lower $m_{\chi_{1}}$ region.
4. With the help of the CRDM scenario, the PandaX-4T exclusion of δ can be extended to 0.1 GeV , even 1 GeV in some cases

(a) $m_{\mathrm{X}_{1}}=5 \mathrm{MeV}$.

(c) $m_{V}=1 \mathrm{MeV}$.

(b) $m_{\mathrm{\chi}_{1}}=1 \mathrm{GeV}$.

(d) $m_{V}=10 \mathrm{MeV}$.

Because of the higher kinetic energy of CRDM, the PandaX-4T data can probe sub-GeV DM region in CRDM but not in vDM scheme.

FIG. 10. 95% upper limits projected in the $\left(m_{\chi}, C_{N}\right)$ plane. (a) the limits with fixed values $\delta=100 \mathrm{MeV}$ and $m_{V}=1 \mathrm{MeV}$ for $\mathrm{VV}, \mathrm{AA}, \mathrm{ED}$, and MD. (b) Comparison between XENON1T and PandaX-4T based on the VV interaction. The XENON1T limit from Ref. [29] is used for comparison.

总结和展等

> 1．mass splitting $\delta<O(1 \mathrm{GeV})$ can still be achieved with the DM mass range considered in this study with the latest PandaX－4T data，

2．several different interactions，including both fermionic and scalar DM are considered．Constraints are provided．

3．Another interesting follow－up study would describe the form factor more precisely

