

王亚坤

Peking University

0νββ

1

□ 引言

□ 理论框架

□ 结果讨论

□ 总结

□ 两中微子双 β 衰变 - $2\nu\beta\beta$ $(A,Z) \rightarrow (A,Z+2) + e^- + e^- + \bar{\nu}_e + \bar{\nu}_e$

轻子数守恒,标准模型允许的衰变过程 已在 12 个原子核中观测到衰变信号

Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013)

□ 无中微子双 β 衰变 - $0\nu\beta\beta$ $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

检验轻子数是否守恒 确定中微子的 Majorana 属性 确定中微子的质量排序和绝对质量 理解宇宙中物质和反物质的不对称

Avignone, Elliott, Engel, Rev. Mod. Phys. 80, 481 (2008)

Peking University

 $0\nu\beta\beta$

无中微子双贝塔实验研究进展

□ 0*ν*ββ 衰变实验:

候选核	半衰期下限(年)	实验合作组	候选核 实验名称 牵头单位
⁴⁸ Ca	$5.8 imes 10^{22}$	ELEGANT-VI	⁷⁶ Ge CDEX 清华大学
$^{76}\mathrm{Ge}$	$1.8 imes 10^{26}$	GERDA	⁸² Se NvDEx 近代物理研究所
	8.3×10^{25}	MAJORANA	¹⁰⁰ Mo CUPID-China 复旦大学
$^{82}\mathrm{Se}$	4.6×10^{24}	CUPID-0	¹³⁶ Xe PandaX 上海交通大学
$^{100}\mathrm{Mo}$	1.5×10^{24}	CUPID-Mo	
$^{128}\mathrm{Te}$	3.6×10^{24}	CUORE	10^{-1} Current 0νββ Exp.
$^{130}\mathrm{Te}$	3.2×10^{25}	CUORE	
$^{136}\mathrm{Xe}$	2.3×10^{26}	KamLAND-Zen	
	$3.7 imes 10^{25}$	EXO-200	
$^{150}\mathrm{Nd}$	$2.0 imes 10^{22}$	NEMO-3	10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹
			m _L (eV)

Peking University

0νββ

4

双贝塔候选核⁷⁶Ge

□基于高纯锗探测阵列的 0νββ 衰变实验特点:

- ✓ 高纯锗探测器 ⇒ 高的能量分辨率 (2.53 ± 0.08 keV)
- ✓ "源=探测器" ⇒ 高的探测效率
- ✓ 液 氩 屏 蔽 ⇒ 低 本 底 (~10⁻⁴ cts/keV · kg · yr), background-free experiment

Andrea et al., Universe 7, 341 (2021)

□ GERDA 合作组给出 ⁷⁶Ge 0νββ 衰变的半衰期约为 1.8 × 10²⁶ 年 ⇒
 最严格的半衰期限制之一。
 Agostini et al., PRL 125, 252502 (2020)

□CDEX-1T、LEGEND-1000 实验:半衰期 10²⁸ 年, m_{ββ} = 10 - 20 meV。

原子核 ⁷⁶Ge 是探测 $0\nu\beta\beta$ 衰变过程最具竞争力的候选核之一!

$0\nu\beta\beta$ 衰变核矩阵元

 0νββ 衰变理论研究的关键是通过核多体方法计算给出相关的原子 核矩阵元。

□ 0νββ 衰变的半衰期: Tomoda, Rep. Prog. Phys. 54, 53 (1991)

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z)|M^{0\nu}|^2 \left|\frac{\langle m_{\beta\beta}\rangle}{m_e}\right|^2$$

✓ 相空间因子 $G^{\alpha}(Q_{\beta\beta}, Z)$: 通过严格求解轻子波函数精确计算

✓ 核矩阵元 $M^{\alpha} = \langle \Psi^{f} | \hat{Q}_{\alpha} | \Psi^{i} \rangle$: 原子核多体方法计算给出

✓ 有效中微子质量 $\langle m_{\beta\beta} \rangle$: 结合实验半衰期与核矩阵元确定

原子核矩阵元对分析、解释实验结果,提取有效中微子质量等新物 理参数至关重要。

原子核 ⁷⁶Ge 核矩阵元研究进展

不同理论方法给出的核矩阵元值存在约3倍的差异,这严重限制了有效中微子质量的确定精度,也制约了对实验结果的分析和解释。

Peking University

7

多体波函数约束:核谱学和 2νββ 衰变数据

山道则重 E2 跃迁起阵兀, 结合转 动量不变求和分析, Ayangeakaa 等人给出了 ⁷⁶Ge 具有显著三轴形 变的实验证据, 相应的三轴形变值 $\gamma = 27^{\circ}$ 。

Ayangeakaa et al., PRL 123, 102501 (2019)

GERDA 实验测得 ⁷⁶Ge 2νββ 衰变
 的半衰期为(1.926±0.094)×
 10²¹年,相应的 2νββ 衰变核矩阵
 元值为 0.126±0.003 MeV⁻¹。

GERDA Collaboration., EPJC 75,416 (2015)

原子核 ⁷⁶Ge 2νββ 衰变、三轴形变、 及相应的谱学性质,为核多体波函 数的精度以及 0νββ 衰变核矩阵元 的预言结果提供了重要的约束。

 $M^{\alpha} = \langle \Psi^f | \hat{Q}_{\alpha} | \Psi^i \rangle$

Relativistic Configuration-interaction Density functional (ReCD) theory:

轴对称偶偶核: Zhao et al., PRC 94, 041301(R) (2016); Wang et al., PRC 105, 054311 (2022)

Peking University	$\Omega \nu R R$	Q
reking University	υνρρ	5

本文工作

- 自治考虑原子核的三轴形变自由度,发展既可以描述偶偶核也可以描述奇奇核的 ReCD 理论:
 - ✓ 实现原子核谱学性质、 $2\nu\beta\beta$ 衰变、 $0\nu\beta\beta$ 衰变的统一描述
 - ✓ 通过再现 ⁷⁶Ge 的谱学性质、2 $\nu\beta\beta$ 衰变核矩阵元,检验模型的精度
 - ✓ 预言 ⁷⁶Ge $0\nu\beta\beta$ 衰变的核矩阵元值
 - ✓ 分析三轴形变自由度对 ⁷⁶Ge 0νββ 衰变核矩阵元的贡献

核多体波函数

□ ReCD 框架下,原子核多体波函数的形式为, $|\Psi_{IM}^{\sigma}\rangle = \sum_{K\kappa} F_{K\kappa}^{I\sigma} \hat{P}_{MK}^{I} |\Phi_{\kappa}\rangle$

 $F_{K\kappa}^{I\sigma}$ 展开系数, \hat{P}_{MK}^{I} 角动量投影算符, $|\Phi_{\kappa}\rangle$ 内禀波函数偶偶核: $|\Phi_{\kappa}\rangle \in \{|\Phi_{0}\rangle, \hat{\beta}_{\pi_{i}}^{\dagger}\hat{\beta}_{\pi_{j}}^{\dagger}|\Phi_{0}\rangle, \hat{\beta}_{\nu_{i}}^{\dagger}\hat{\beta}_{\nu_{j}}^{\dagger}|\Phi_{0}\rangle, \hat{\beta}_{\pi_{i}}^{\dagger}\hat{\beta}_{\pi_{j}}^{\dagger}\hat{\beta}_{\nu_{i}}^{\dagger}\hat{\beta}_{\nu_{j}}^{\dagger}|\Phi_{0}\rangle$ $\hat{\beta}_{\pi_{i}}^{\dagger}\hat{\beta}_{\pi_{j}}^{\dagger}\hat{\beta}_{\pi_{k}}^{\dagger}\hat{\beta}_{\pi_{i}}^{\dagger}|\Phi_{0}\rangle, \hat{\beta}_{\nu_{i}}^{\dagger}\hat{\beta}_{\nu_{j}}^{\dagger}\hat{\beta}_{\nu_{k}}^{\dagger}\hat{\beta}_{\nu_{i}}^{\dagger}|\Phi_{0}\rangle$

奇奇核: $|\Phi_{\kappa}\rangle \in \{\hat{\beta}^{\dagger}_{\pi_{0}}\hat{\beta}^{\dagger}_{\nu_{0}}|\Phi_{0}\rangle, \hat{\beta}^{\dagger}_{\pi_{i}}\hat{\beta}^{\dagger}_{\nu_{j}}|\Phi_{0}\rangle, \hat{\beta}^{\dagger}_{\pi_{i}}\hat{\beta}^{\dagger}_{\nu_{j}}\hat{\beta}^{\dagger}_{\pi_{k}}\hat{\beta}^{\dagger}_{\pi_{l}}|\Phi_{0}\rangle, \hat{\beta}^{\dagger}_{\pi_{i}}\hat{\beta}^{\dagger}_{\nu_{j}}\hat{\beta}^{\dagger}_{\nu_{k}}\hat{\beta}^{\dagger}_{\nu_{l}}|\Phi_{0}\rangle\}$

□相对论 Hartree-Bogoliubov 方程,

$$\left(\begin{array}{cc} h_D - \lambda & \Delta \\ -\Delta^* & -h_D^* + \lambda \end{array}\right) = E_k \left(\begin{array}{c} U_k \\ V_k \end{array}\right)$$

□ Hill-Wheeler 方程,

$$\sum_{K'\kappa'} \{ \langle \Phi_{\kappa} | \hat{H} \hat{P}^{I}_{KK'} | \Phi_{\kappa'} \rangle - E^{I\sigma} \langle \Phi_{\kappa} | \hat{P}^{I}_{KK'} | \Phi_{\kappa'} \rangle \} F^{I\sigma}_{K'\kappa'} = 0$$

跃迁算符与核矩阵元

跃迁算符与核矩阵元

□ 衰变核矩阵元的形式为:
$$M^{\alpha} = \langle \Psi_{f}^{0+} | \hat{\mathcal{O}}^{\alpha} | \Psi_{i}^{0+} \rangle$$

 $\hat{\mathcal{O}}^{2\nu} = \frac{1}{g_{A}^{2}} \int \int dx_{1} dx_{2} \sum_{n} \frac{\mathcal{J}_{\mu}^{\dagger}(x_{1}) | \Psi_{n} \rangle \langle \Psi_{n} | \mathcal{J}^{\mu\dagger}(x_{2})}{E_{n} - 1/2(E_{i} + E_{f})}$

 $2\nu\beta\beta$ 衰变算符不包含对转移动量 q 的积分 \rightarrow 封闭近似不再适用 $\mathcal{J}^{\dagger}_{\mu}(\boldsymbol{x}) = \bar{\psi}(\boldsymbol{x}) \left[g_{V}(\boldsymbol{q}^{2})\gamma_{\mu} + ig_{M}(\boldsymbol{q}^{2})\frac{\sigma_{\mu\nu}}{2m_{n}}q^{\nu} - g_{A}(\boldsymbol{q}^{2})\gamma_{\mu}\gamma_{5} - g_{P}(\boldsymbol{q}^{2})q_{\mu}\gamma_{5} \right] \tau_{-}\psi(\boldsymbol{x})$ $|\mathbf{q}| \sim 2 \text{ MeV}, \quad g_{V,M,A,P}(\mathbf{q}^2) \rightarrow g_{V,M,A,P}(0)$ $\mathcal{J}^{\dagger}_{\mu}(\boldsymbol{x}) = g_A \bar{\psi}(\boldsymbol{x}) \gamma_{\mu} \gamma_5 \tau_- \psi(\boldsymbol{x})$ $\hat{\mathcal{O}}^{2\nu} = \frac{1}{g_A^2} \int \int dx_1 dx_2 \sum_{n} \frac{\mathcal{J}_{\mu}^{\dagger}(x_1) |1_n^+\rangle \langle 1_n^+ | \mathcal{J}^{\mu \dagger}(x_2)}{E_n - 1/2(E_i + E_f)}$

⁷⁶Ge 和 ⁷⁶Se 的位能曲面

ReCD 理论计算给出的 ⁷⁶Ge 和 ⁷⁶Se 的 0⁺ 态位能面均具有显著的
 三轴形变极小,相应的三轴形变 γ 分别为 22°和 32°,与实验结果 27°和 24°相符。

⁷⁶Ge 和 ⁷⁶Se 的谱学性质

 轴对称形变:理论计 算无法再现 γ 带的实 验结果,⁷⁶Ge的 2⁺₁态 能量被高估,而76Se 的 2⁺₁态能量被低估。

- 三轴形变:理论计算
 结果较好地再现了基
 态转动带以及 γ 带的
 实验结果。
- ■考虑原子核的三轴形 变,显著改善了⁷⁶Ge 和⁷⁶Se 多体波函数的 理论描述。

⁷⁶Ge $2\nu\beta\beta$ 衰变核矩阵元值

⁷⁶Ge $0\nu\beta\beta$ 核矩阵元值

□ 三轴形变自由度对描述 ⁷⁶Ge 0νββ 衰变核矩阵元很重要。考虑三 轴形变后,核矩阵元值从 3.16 增加到 5.92。

Peking University

总结

□ 发展了相对论组态相互作用密度泛函理论:

- ✓ 结合了组态相互作用壳模型和相对论密度泛函理论的优势
- ✓ 自洽考虑原子核的三轴形变
- ✓ 同时处理偶偶核和奇奇核

统一描述原子核的谱学性质和 ββ 衰变过程

□ 对原子核 ⁷⁶Ge 的双贝塔衰变进行了微观研究:

- 考虑三轴形变后,理论计算很好地再现了原子核 ⁷⁶Ge 和 ⁷⁶Se 的低激
 发谱学性质,以及⁷⁶Ge 到 ⁷⁶Se 的两中微子 ββ 衰变核矩阵元
- 三轴形变对 ⁷⁶Ge 两中微子 ββ 衰变核矩阵元的影响比较小,使核矩阵 元值增加约 11%
- ✓ 三轴形变会显著增加 ⁷⁶Ge 无中微子 ββ 衰变核矩阵元值

附录

⁷⁶Ge $0\nu\beta\beta$ 核矩阵元值

□考虑三轴形变后, Reconfident 给出的核矩阵元值与 GCM-CDFT、 GCM-NRDFT 的结果相当, 稍高于 IBM、QRPA 的计算结果, 显著高于 SM、GCM-SM、TPSM 的计算结果。