

地下和空间粒子物理与宇宙物理前沿问题研讨会

锦屏低温晶体量热器实验 深冷半导体温度传感器NTD-Ge研制

段德勇(代表CUPID-CJPL)

2023/05/09

核探测与核电子学国家重点实验室

中国科学技术大学

目录

▶物理背景 ▶低温晶体量热器 ▶低温温度传感器与NTD-Ge ▶NTD-Ge温度传感器研制 ▶辐照预处理 ▶反应堆中子辐照 ▶辐照后特性研究 ▶微纳加工工艺 ▶mK级低温测试 ▶总结与展望

无中微子双贝塔衰变

千岛湖 2023/05/09

2

低温晶体量热器

- 以声子为媒介子的极低温(~mK)探测器
 - 低能量探测阈值 $T_0 \sim mK$ $w \approx meV$
 - 能量分辨率高 ⇒ FWHM <u>5.2keV@2615keV</u>
 - 声子测量典型值 △ T~100 µK/MeV at 10 mK @TeO2
- 吸收晶体:"源=探测器"结构有极高探测效率
- 闪烁晶体: 声子-荧光两维读出
 - α和 β/γ 荧光产额不同→有效粒子鉴别

极低温	温	度	传	感	罢
		11	1 ×	10	μμ

段德勇

- 中子嬗变掺杂锗半导体 (Neutron Transmutation Doped Germanium)
- •利用反应堆热中子辐照,将半导体的部分核素原子嬗变为掺杂杂质

	同位素	丰度(%)	热中子俘获截 面(bar)	中子俘获产物 (half-life)	实现掺杂杂质 (衰变过程)	杂质类型
107.00	⁷⁰ Ge	20.7	3.05(13)	⁷¹ Ge (11.4 d)	⁷¹ Ga (EC)	受主
	⁷² Ge	27.5	0.89(8)	⁷³ Ge (stable)	⁷³ Ge	
	⁷³ Ge	7.7	14.7(4)	⁷⁴ Ge (stable)	⁷⁴ Ge	
	⁷⁴ Ge	36.6	0.36(4)	⁷⁵ Ge (82.8 m)	⁷⁵ As (β- decay)	施主
	⁷⁶ Ge	7.5	0.055(2)	⁷⁷ Ge (38.8, 11.3 h)	⁷⁷ Se, ⁷⁷ As (β-, β-)	施主

- 中子俘获截面相对较小,半导体内部中子通量几乎相同,掺杂均匀
- 可以实现大量、重复性的制备

NTD-Ge温度传感器工作原理

- 变程跳跃传导机制, (Variable Range Hopping, VRH)
- 电阻-温度关系: Mott's law, α=0.5

材料、规格、电极

$$R = R_0 exp \left(\frac{T_0}{T} \right)$$
Mott定律 α=0.5

• NTD-Ge由伯克利国家实验室研制,典型取值 $R_0 \sim 1 \Omega$, $T_0 \sim 4 K$

NTD-Ge极低温热传感器研制

辐照前预处理工艺

- HP-Ge(Umicore, 10N纯度), 金刚石划片机切割
- · 上海应用物理所ICPMS测试丰度; 锦屏HP-Ge谱仪测试放射性杂质

- 表面处理:化学刻蚀20~25µm/HF表面去氧化
- 密闭封装: 高纯石英盒(磨砂口)+聚酰亚胺胶带+铝箔+高纯铝盒

高纯锗(HP-Ge)辐照

- 中国原子能研究院中国先进研究堆 (CARR)
 - 轻水冷却,重水慢化,多个试验孔道,垂直孔道
 - 热中子份额 > 99.0%
- 设置6个不同的中子注量点~10¹⁸ n·cm⁻²
- 辐照后, 放置150天, 实现嬗变掺杂及达到放射性安全

后处理工艺-特性研究

NTD-Ge反应堆中子辐照注量

- To取决于掺杂浓度(中子辐照注量)
- 首次提出采用锗自身放射性标定热中子注量(专利202111202078.8; arXiv:2302.12982)
 - X射线测量 + Geant4模拟效率
 - 无需引入额外的检测片、信号能区干净

$$A(t) = \frac{\lambda \sigma \phi N_0}{\lambda - \sigma \phi} \left(e^{-\sigma \phi t_r} - e^{-\lambda t_r} \right) e^{-\lambda t}$$

\$\approx \sigma \phi N_0 \left(1 - e^{-\lefta t_r} \right) e^{-\lefta t}, when \sigma \phi \lefta \lefta\$

Gam	nma and X	(-ray radiation	<u>n</u> :			
Energy (keV)))	Intensity (%)	Dose (MeV/Bq-s)		
XR	1	1.1	1.52 % 5	1.68E-5 5		
XR	kα2	9.225	13.3 % 5	0.00123 5		
XR	ka1	9.252	26.1 % 10	0.00242 9		
XR	kβ3	10.26	1.66 % 6	1.71E-4 6		
XR	kβ1	10.264	3.24 % 11	3.33E-4 12		
XR	kβ2	10.366	0.0275 % 10	2.85E-6 10		

φ:为热中子通量
 σ:⁷⁰Ge中子俘获截面
 λ:⁷¹Ge衰变常数

中子辐照注量测量

• Micro-Megas和SDD探测器测量NTD-Ge特征X射线

• 中子注量测量结果, MMD与SDD结果一致

Sources		Contribution (%)		
		MMD	SDD	
Experiment	Peaks fit	1.321	0.428	
	Efficiency	3.755	2.078	
Experimental total		3.981	2.122	
Input parameters		5.957	5.905	

变温霍尔效应测试

- 综合物性测量仪 (PPMS): 温区10 K-300 K, 磁感应强度(-3T, +3T)
- 银胶、金线(φ25 μm)制作霍尔电极

- 霍尔效应测量得到掺杂浓度与中子通量估算得到
 结果相近,偏差来自于霍尔因子相对1的偏离,以
 及少量缺陷的散射
- 实验所测高掺杂的NTD-Ge,杂质在100 K-250 K温度区间体现出冻结特性,即为杂质电离区
- 在300 K左右,温度升高,自由载流子浓度上升趋势减缓,杂质完全电离

Sample	Ga acceptor concentration /[1.0E17 (cm ⁻³)]			Ratio
	Hall carrier	$N_A (r_H = 1)$	Fluence	Fluence/Hall
2-2	1.515	1.950	2.029	1.041
2-1	1.656	2.131	2.160	1.014
3-3	1.242	1.598	1.840	1.151
3-2	1.352	1.740	1.981	1.139
3-1	1.190	1.532	1.835	1.198

中子辐照缺陷研究

- 中子辐照缺陷:引入缺陷能级,不明确载流子数目变化
 - 快中子冲击,使晶格原子发生位移。
 - 热中子俘获及后续衰变产生的核反冲
- · PALS正电子寿命表征NTD-Ge缺陷,无损检测
 - 空位型缺陷呈电负性,易捕获正电子
 - 电子密度越高,正电子湮没寿命越短
 - · 缺陷中寿命T2的占比I2可以表征缺陷浓度
- 缺陷浓度随中子注量增大而增加
- 高温退火后中子辐照缺陷基本完全恢复

Sample	$ au_1(\mathrm{ps})$	$ au_2(\mathrm{ps})$	<i>I</i> ₁ (%)	<i>I</i> ₂ (%)
HP-Ge	223	343	86.3	12.8
NTD-Ge	268.6	310.2	33.4	65.9
Annealed-NTD-Ge	228.5	409	96.3	3.5

后处理工艺-微纳加工

样品处理工艺流程

- 化学溶液刻蚀, 去除表面放射性污染
- 晶圆划片机切割
- 化学机械研磨、绒布+水 抛光
 - 减薄,控制器件标准大小
 - 原子级表面粗糙度, 增强电极质量
- 样品标准清洗流程
 - •去除有机污染、无机污染

欧姆接触电极制备

- •若半导体于金属直接接触,一般形成肖特基接触(二极管)
- 表面重掺杂减小势垒宽度,隧穿电流形成欧姆接触
 不同能量硼离子组合注入,形成表面平坦杂质分布
- · 真空溅射镀膜金属电极Cr-Al-Cr-Au

- •稀释制冷机低温平台(<10mK)
- Cu测试基座、辐射罩
- 引线键合法连接电极
- 超导Nb-Ti线
- 前端电子学+DAQ数字采集板

热连接与热功率

NTD用环氧树脂绝缘固定在紫铜板上
小铜板与冷盘用导热脂连接
使用黄铜螺丝固定紫铜板
使用黄铜螺丝固定紫铜板
● 减少外部热功率
• 福射罩屏蔽
• 使用超导Nb-Ti线
• 焦耳热功率控制
• 恒流偏置电路, R_{load} > R_{NTD}
• 温度低, 电阻大, 焦耳热功率更大

NTD-Ge极低温电阻特性

- •41B系列参考NTD测试:
 - •来自于同一大片NTD,中子注量相同,即 T_0 一致
 - 测量结果与国外一致
- 自制NTD-Ge测试: > 50 mK
 - · 满足Mott定律描述的电阻-温度特性
 - T₀ Fluence关系符合预期

展望

- •标准化工艺流程,优化工艺参数
- •NTD-Ge应具有足够小的低温热容,足够高的灵敏度
 - 优化NTD-Ge温度传感器器件规格
 - 优化金属电极形状、大小、工艺
- •耦合晶体进行晶体量热器测试
 - 放射源、宇宙线进行能量标定
 - 低温热连接优化
 - 信号脉冲测试
 - 光探测器NTD-Ge传感器设计

总结

- 低温晶体量热器是寻找0νββ等稀有事件最具潜力的技术方案之一,具有独特优势;
- •NTD-Ge低温温度传感器是低温量热器的核心部件之一
 - 其动态响应范围大,灵敏度高,能够实现µK量级变化的精密测量;
- •NTD-Ge研制制作周期长,涉及复杂的微纳加工工艺

目前初步走通相关技术流程;获得R-T曲线,符合Mott定律;

Thanks !