Search for Exotic Dark Matter with CDEX-10 Experiment at CJPL

Wenhan Dai

Department of Engineering Physics, Tsinghua University

CDEX Collaboration

2023/05/09

China Jinping Underground Laboratory 清华大学·雅砻江流域水电开发有限公司

中国锦屏地下实验室

CJPL 📥

- II. CDEX-10 Experiment
- **III. Neutral current fermionic DM absorption**
- **IV. DM-nucleus 3-2 scattering**
- V. Conclusion

Hunt for Dark Matter:

> Various astronomical observations favor the existence of Dark Matter (DM)

Since we may be surrounded by the dark matter, we may detect it via its interaction with ordinary matter

Fig from J.P. Cheng et al. Annu. Rev. Nucl. Part. Sci. 67:231–51, (2017)

U Weakly interacting massive particles (WIMPs)

- ➤ WIMPs is one of the most popular dark matter candidates (mass in GeV TeV scale)
- > Direct search experiments have searched WIMPs via different detection technologies for several decades

However, no WIMPs has been discovered yet...

Fig from T. Saab, An introduction to dark matter direct detection searches & techniques, arXiv: 1203.2566

Draw by https://supercdms.slac.stanford.edu/dark-matter-limit-plotter

Other Dark Matter Candidates:

The null result from searches for WIMPs has motivated studies of other possible DM candidates

Light DM in keV-GeV scale contains many interesting DM candidates:

Axion-like particles, sterile neutrino, and other exotic DM ...

Fig from: Tongyan Lin, TASI lectures on dark matter models and direct detection, arXiv:1904.07915

Given Search for Light Dark Matter:

- Lower detection threshold: HPGe detector
- Larger recoil energy: absorption or Inelastic scattering

W. Chao et al, arXiv:2109 14944.

II. CDEX-10 Experiment

CDEX-10 Experiment:

CDEX-10 experiment is hosted in a polyethylene room at CJPL-I

- > A 10 kg PPCGe detector array directly cooled by liquid nitrogen and surrounded by multi-layer shieldings
- The C10-B1 detector accumulates 205.4 kg·day data and achieves the lowest analysis threshold of 160 eVee

Fig from J.P. Cheng et al. Annu. Rev. Nucl. Part. Sci. 67:231–51, (2017)

Fig from H. Jiang et al. (CDEX Collaboration) Phys. Rev. Lett. 120, 241301 (2018).

C10-B1 Spectrum:

Spectrum after all data selection and efficiency correction

II. CDEX-10 Experiment

□ Energy resolution of C10-B1 detector:

- Resolution fitted by random trigger signals and KX-ray peaks
- > Resolution near analysis threshold ~ 50 eVee (a) 1 keVee

Symposium on frontiers of underground and space particle physics and cosmophysics, 2023

Background Model in 0.16-4.0 keVee spectrum:

Background in 0.16-4 keVee spectrum consists of a flat component and L/M X-ray peaks

$$B(E) \qquad \qquad \text{L-X peaks} \qquad \qquad \text{M-X peaks} \\ = Flat + \left[\sum \frac{A_L}{\sqrt{2\pi}\sigma_L} e^{\left(\frac{-(E-E_L)^2}{2\sigma_L^2}\right)} + \sum \frac{A_M}{\sqrt{2\pi}\sigma_M} e^{\left(\frac{-(E-E_M)^2}{2\sigma_M^2}\right)} \right]$$

Constrain L/M-X peaks by K-X peaks:

$A_{L,M}$	$\in (A_K)$	$\pm 3\sigma_{A_K}$)	$\cdot R_{L,M/K}$

Isotope	E _K	EL	R _{L/K}	E _M	R _{M/K}
Ge-68	10.37 keV	1.298 keV	0.133	0.16 keV	0.0189
Ga-68	9.66 keV	1.194 keV	0.111	0.14 keV	0.0185
Zn-65	8.98 keV	1.096 keV	0.119		
Fe-55	6.54 keV	0.764 keV	0.117		
Mn-54	5.99 keV	0.695 keV	0.106		
V-49	4.97 keV	0.564 keV	0.106		

III. Fermionic dark matter neutral current absorption

Direct detection of Neutral current fermionic DM absorption:

- \succ DM (χ) mixes with massless Dirac neutrino (ν) through a Yukawa interaction of a scalar field
- > Absorption of DM gives a monoenergetic nuclear recoil energy, $E_R \simeq m_{\chi}^2/(2M_N)$

Theory: J. A. Dror, G. Elor, and R. McGehee, Phys. Rev. Lett. 124, 181301 (2020).

Differential event rate:

- σ_{NC} : cross section per nucleon
- m_{χ} : DM mass
- ρ_{χ} : DM local density $\simeq 0.3 \text{ GeV/cm}^3$
- A_j : mass number of isotope j

 $N_j \cdot M_j$: mass of isotope j

- E_R : nuclear recoil energy
- $\boldsymbol{v}_{\boldsymbol{\chi}}$: DM velocity in Lab
- F_i : Helm nuclear form factor

$$\boldsymbol{p}_{\boldsymbol{\nu}} = \sqrt{q_j (2m_{\chi} - q_j - 2E_R)}, \qquad \boldsymbol{q}_{\boldsymbol{j}} = \sqrt{2E_R M_j}$$

Differential event rate:

- > Spectra shape term relates to E_R and DM velocity
- Capped Maxwell distribution for DM velocity

$$\left(\frac{1}{v_{\chi}}\right) = \int_{v_{min}}^{\infty} d^3 v \frac{f(\vec{v})}{v}$$

$$\begin{aligned} v_{min} &= \frac{\left|E_R + \sqrt{2M_j E_R} - m_\chi\right|}{m_\chi} \\ f(\vec{v}) &= \frac{1}{f_N} \exp\left[-\frac{\vec{v} + \vec{v}_e}{v_0^2}\right] \Theta(v_{esc} - |\vec{v} + \vec{v}_e|) \end{aligned}$$

- \vec{v} : DM velocity at Lab frame \vec{v}_e : Ea
- v_{min} : Minimum v for E_R
- f_N : Normalize factor
- Θ : Step function

- \vec{v}_e : Earth speed at Galaxy
- v_{esc} : Galactic escape speed
- v_0 : Local standard rest speed

Data from: D. Baxter et al., Eur. Phys. J. C 81, 907 (2021).

D Expect spectra (nuclear recoil):

- Compute Helm form factor for Ge
- Nuclear recoil spectra for different Ge isotopes

D Expect spectra (visible energy):

- Consider quenching and energy resolution in DM signal
- > Quenching factor for Ge is compute via TIRM software

Calculation of Quenching factor for Ge follows our previous works: Q. Yue et al. (CDEX Collaboration), Phys. Rev. D 90, 091701 (2014). H. Jiang et al. (CDEX Collaboration) Phys. Rev. Lett. 120, 241301 (2018).

Reference for TRIM software: J. F. Ziegler, NIM-Phys. Res. Sect. B. 1027, 219220 (2004).

D Upper limit of $\sigma_{\rm NC}$:

> This work achieves lowest DM mass reach ($\sim 10 \text{ MeV/c}^2$) among direct detection experiments to date

Direct detection of DM-nucleus 3-2 scattering signal:

- > Two DM particles (χ) interact with nucleus (N) and transform into a DM final state (ϕ)
- > This inelastic scattering process of DM gives a monoenergetic nuclear recoil energy

Total event rate:

$$R_{3\to2} = \frac{\rho_{\chi}}{m_{\chi}} \cdot \boldsymbol{n_{\chi}} \langle \boldsymbol{\sigma_{3\to2}} \cdot \boldsymbol{v_{\chi}^2} \rangle \frac{1}{M_T} \sum_j N_j M_j A_j^2 F_j^2$$
$$E_R \simeq \frac{(4-\xi^2)m_{\chi}^2}{2(M_j+m_{\chi})}, \qquad \xi = \frac{m_{\phi}}{m_{\chi}}$$

- ϕ = Bound State (ξ = 1.87)
- ϕ = Dark photon (ξ = 0)

$$n_{\chi} \langle \sigma_{3 \to 2} \cdot v_{\chi}^2 \rangle$$
: DM-nucleus coupling, cm², $n_{\chi} = \frac{\rho_{\chi}}{m_{\chi}}$

 m_{χ} : DM mass

$$\rho_{\chi}$$
: DM local density $\simeq 0.3$ GeV/cm²

- A_j : mass number of isotope j
- $N_j \cdot M_j$: mass of isotope j

E_R :	nuclear recoil energy	
v_{χ} :	DM velocity in Lab	
<i>F_j</i> :	Helm nuclear form factor	
M_{π} ·	Total target mass	

 $m_{\chi/\phi}$: Mass of DM initial/final state

Expect spectra (visible energy):

- Set (ξ =1.87) for bound DM final state as recommended
- > Set limit on coupling $n_{\chi} \langle \sigma_{3 \to 2} \cdot v_{\chi}^2 \rangle$

References for set ξ =1.87:
W. Chao et al., arXiv:2109.14944.
I. J. Arnquist et al. (Majorana Collaboration), arXiv:2206 10638.

D Upper limit of coupling $n_{\chi} \langle \sigma_{3 \to 2} \cdot v_{\chi}^2 \rangle$:

> This work achieves lowest DM mass reach among searches in direct detection experiments to date

MJD: I. J. Arnquist et al. (Majorana Collaboration), arXiv:2206 10638.

V. Conclusion

V. Conclusion

□ Search for sub-GeV exotic DM with CDEX-10 experiment:

- ➤ C10-B1 PPCGe detector: 205.4 kg·day exposure @ 160 eVee analysis threshold
- Two physical channels: <Neutral current fermionic DM absorption> and <DM-nucleus 3-2 scattering>

Achieves lowest DM mass reach among searches in direct detection experiments to date

W.H. Dai et al. (CDEX Collaboration), Phys. Rev. Lett. 129, 221802, 2022

Thanks