

愛川大学 SICHUAN UNIVERSITY

液闪测氡装置研发

ER CONTENT

01 研究背景

02 极低氡浓度测量与抑制目标

03 研究现状与计划

04 总结与展望

Subtotal

欧洲XENC Rador E. Aprile et ER background Detector radioactivity ²²² Rn * ⁵ Kr	NNT实 n本底 al JCAP11(2020 / 25±3 55±6 13±1	氡是低	氏温液	友体	主要	史本	底之一	本底 ^{ation)} lovembe nd	来源 r ²⁰¹⁸
¹³⁶ Xe 124 X o	16 ± 2			ļ	•		L.1L - 0.0		
Solar neutrinos	34 ± 1 34 ± 1				218 p	°o	155 ± 0.03	3uBa/kc	ן נ
Total	148 ± 7			ļ	•	•	1.00 - 0.00	<u></u>	<u>,</u>
NR background					39 A	r	0.73 ± 0.11	lmBa/ka	ב
Neutrons	4.25±0.1uBo	a/ka		ŀ					
$\frac{\text{CE}\nu \text{NS} (\text{Solar }\nu)}{\text{CE}\nu \text{NS} (A_{\text{CE}} + \text{DSN})} \leq \frac{10 \text{B} \alpha/k\alpha}{10 \text{B} \alpha/k\alpha}$					⁸⁵ Kr		1.9±0.1mBa/ka		
Total	$(1.0 \pm 0.2) \times 10^{-1}$			L	Background source	Mass (kg)	mBalka		(cts) NR (cts)
	× /				Detector con	Mass (kg)	шрфкд	illyi LR (
Table 4 Final background budget within the WIMP search window					PMT system		UX-7FPI IN 实	コ金	0.027 0.022
Sources	ER in mDRU	NR in mDRU			Cryostat Outer detecto				0.018
Materials	0.0210±0.0042	$(2.0 \pm 0.3) \times 10^{-4}$			All else		本底釆源		0.003
²²² Rn	0.0114 ± 0.0012				Surface contamination				0.07
⁸⁵ Kr	0.0053+0.0011	PandaX-	-4T空硷		Dust (intrinsic activity, 1	50 D. S.	Akerib et al. (LUX-ZEI	PLIN ^{0.}	.2 0.05
136 V e	0.0023±0.0003	i andax		4	²¹⁰ Bi mobility (0.1 μ Bq	5 /k	Collaboration)	40).0
	0.0023±0.0003	本底	来源	in.	Ion misreconstruction (5 ²¹⁰ Pb (in bulk PTFE, 10	Phys	. Rev. D 101, 052002	- ::	·· 0.16 ·· 0.12
Neutrino	0.0090 ± 0.0002	*****	~ [~ 1//] \	The 1		Ρι	blished 4 March 2020	40	0 0.39
Sum	0.049 ± 0.005	Sci. China Phvs	. Mech. Astron.	62.	222Dp (1.8 uDg/lcg)				01
2-year yield (evts)	1001.6±102.2	31011	I (2019).	- Cle	220 Rn (0.09 μ Bq/kg)			11	11 ···
after selection (evts)	2.5±0.3	2.3±0.4	S. C. Martin States	What Sharl	^{nat} Ar (0.015 ppt g/g) ^{nat} Ar (0.45 ppb g/g)			24	.5

极低氡浓度测量与抑制目标

Simulation results of CDEX-50dm for the various materials 暗物质能区(0-2keV)本底水平

CDEX-50dm物理目标: <0.01cpkkd

液氮中²²²Rn的本底<0.001cpkkd,液氮需要纯化到 <10μBq/kg 量级

氡的来源及性质:▶主要来自于铀钍

- ▶惰性气体,具有很强的扩散性质
- ▶空气中浓度高

(中国锦屏地下实验室环境中氡浓度~58Bq/m³[2015~2016])

▲屏蔽体自身就会有氡溢出
▲氡及其子体产生多种次级粒子

 $(a, \beta, gamma)$

☑液闪对氡较高的氡溶解系数

図液闪铀钍含量低,能实现极低的自身氡放射性本底

BOREXINO: U/Th ~10⁻¹⁸~10⁻¹⁷ g/g JUNO: U/Th ~10⁻¹⁸ g/g

O探测器体积易增大,易实现氡富集

团强的抑制本底能力,以及良好的甄别能力

研究现状与计划

氢随时间衰变曲线图

级联衰变计数率随时间的变化

本底测量

▶ 整个系统本底约 60 µBq

研究现状

14

▶玻璃容器密封性需要改进

低温装置

■冷阱吸附

Fi

内可放置活性炭

15

▶富集低浓度氡,降低探测下限

Table 2

▶ 除氡

https://doi.org/10.1016/j.nima.2018.06.076

15

Radon emanation screening from charcoals and their approximate prices in 2017. Uncertainties are statistical only and are reported at 68% C.L. The systematic uncertainty on the specific activit

	•	
neasurement		

活性炭自身氡溢出 0.2~1 mBq/kg

Charcoal	Specific activity (mBq/kg)	Price (USD/kg)	References
Calgon OVC 4×8	53.6 ± 1.3	6	This work
Shirasagi G2 \times 4/6–1	101.0 ± 8.0	27	This work
Saratech	1.71 ± 0.20	35	This work
HNO ₃ etched Saratech	0.51 ± 0.09	135	This work
Carboact	0.23 ± 0.19	15,000	This work
Carboact	0.33 ± 0.05	15,000	[28]

and of

吸附结果

高浓度氡源◀

氡输运在液氮罐中的研究

▶ 液闪测氡装置目的:测量实验环境中的低浓度氡

▶最终目的: **除**氡

氡输运在液氮罐中的研究

▶氡在液氮罐中如何输运

■探测器自身结构 ——> 扩大探测器尺寸

存储罐、混合罐、探测器合为一体,控制本底

活性炭冷阱富集+探测器结构升级

探测器自身结构升级 预计可降三个数量级:~7mBq/m³ 降至~µBq/m³

系统最大本底为60µBq,已达到国际较好的水平

无氡富集时探测下限<10mBq/m³量级

升级探测器结构材料,冷阱富集等,预期可降低探测下限至少三个数量级

谢谢各位老师同学的倾听

Thanks for your listening

