

CDEX-300v program for ⁷⁶Ge 0vββ search

Hao Ma (马豪) Dept. Engineering Physics Tsinghua University 2023.05.09

第二届地下和空间粒子物理与宇宙物理前沿问题研讨会

Outline

- Neutrinoless double beta decay $(0\nu\beta\beta)$
- Introduction to CDEX and CDEX-300v
- $0\nu\beta\beta$ result from CDEX
- Pre-Conceptual design of CDEX-300v
- Future plan of CDEX-300v

Neutrinoless double beta decay

• Questions for neutrino physics:

- Neutrino mass and mass hierarchy
- Dirac or Majorana nature of neutrino
- Neutrino species
- ...
- If 0vββ decay observed:
 - Neutrino behaves as a Majorana particle
 - Lepton number conservation violated
 - Neutrino absolute mass
 - • •

 $(A,Z) \to (A,Z+2) + 2 e^- + Q_{\beta\beta}$ 3

Neutrinoless Double Beta Decay Exp.

- Intrinsic high-purity crystal ~13N
- Source = detector (high ε)
- Industrial enrichment to $\geq 86\%$ (*A*)
- Excellent E resolution (σ) ~0.1% @ 2MeV
- Background rejection (b): PSD, LAr veto, multiplicity...
- Current best $T_{1/2}$ result achieved by Gerda
- Energy resolution crucial for irreducible 2νββ background

Iso	Exposure [kg-yr]	Half life [10 ²⁵ yr]	< <i>m_{ββ}></i> [meV]
⁷⁶ Ge	127.2	18	80 - 182
¹³⁶ Xe	594	10.7	61 - 165
¹³⁰ Te	115.9	1.5	110 - 520
	Iso ⁷⁶ Ge ¹³⁶ Xe ¹³⁰ Te	Exposure [kg-yr] ⁷⁶ Ge 127.2 ¹³⁶ Xe 594 ¹³⁰ Te 115.9	Exposure [kg-yr] Half life [10 ²⁵ yr] ⁷⁶ Ge 127.2 18 ¹³⁶ Xe 594 10.7 ¹³⁰ Te 115.9 1.5

Detecting efficiency

Mass of target

CDEX Roadmap

- Persistently focused on DM direct detection
- Extended to 76 Ge $0\nu\beta\beta$ search
- Multiple physics goals...

CJPL-I

详见5.10杨丽桃报告

$0\nu\beta\beta$ result from CDEX

6

- First ⁷⁶Ge $0\nu\beta\beta$ result in China.
- Exposure: 304 kg·day, CDEX-1 PPC (natural crystal)
- $T_{1/2}^{0\nu} \ge 6.4 \times 10^{22} \text{ yr}, 90\% \text{ C. L.}$

L. Wang et al, Science China P.M.A. (2017) 071011

New $0\nu\beta\beta$ result from CDEX

- Natural BEGe, 1.1kg, 186.4 kg·day exposure
- Establish data analysis procedure and PSD method, 50% reduction of background in ROI than CDEX-1
- First CDEX result from BEGe, $T_{1/2}^{0\nu} \ge 5.6 \times 10^{22}$ yr,90% C. L.

CDEX-300: Physics goal and technical route

- First stage of CDEX ⁷⁶Ge $0\nu\beta\beta$ search project
- Physics goal: $T_{1/2} > 10^{27}$ yr, $< m_{\beta\beta} >: 30-70$ meV

$$T_{1/2}^{0\nu} \propto \underline{\varepsilon} \cdot \underline{A} \cdot \sqrt{\frac{\underline{M} \cdot t}{\underline{b} \cdot \underline{\sigma}}}$$

• Technical route:

Enriched Ge Array

✓ Enriched ⁷⁶Ge (A)
✓ ~ 225kg Ge (M)
✓ Energy resolution (σ)

LAr veto + LN₂ shield

 \checkmark LAr as active shield

✓ LN_2 as passive shield

- + Material bkg control
 - ✓ Cosmogenic radioactivity in Ge
 - ✓ Materials near Ge crystal
 - ✓ Rn in LAr & $LN_2...$

CDEX-300v pre-Conceptual Design

Overview

- LN₂ tank shared with CDEX-50
- Reentrant tube containing LAr submerged in LN_2
- Ge detector array immersed in LAr (veto) tube
- Ge detectors divided into 19 strings (10-11 det/string, 200 in total)

1725 m³ Liquid Nitrogen

LN₂ tank

Specification

- Total volume: 1976m³
- LN_2 volume: $\Phi 13m \times H13m$, ~1725 m³
- LN₂ as Passive Shield & Cryogen
- Five top flanges for detector deployment
 - $1 \times \varphi 1.5$ m, centrally
 - $4 \times \varphi 750$ mm, on a 6m-diameter circle

1725 m³ Liquid Nitrogen

Background

- >4m LN₂ shields most bkg from surroundings
- Rn in LN₂ controlled by purification

CDEX-300v LAr System (1)

Baseline Design:

- ~20 t LAr held by Cu / SS cryostat
- LAr constantly purified
- LAr cryostat immersed in LN₂
- LAr light read out by WLS Fiber + SiPM

LAr

CDEX-300v LAr System (2)

LAr Purification:

- Removing $O_2 / H_2O / N_2$ from GAr (~10ppb impurity)
- Maintaining high light yield & transmission length
- Removing Rn by active carbon ($\sim \mu Bq/m^3$)
- Possible underground Argon (Ar-42 depleted)

LAr Cooling:

- Cooling purified GAr to LAr
- Heat exchanger + electrical condenser
- Backup LN₂ cooling module

CDEX-300v LAr System (3)

LAr Scintillation Light Readout

- Detector strings surrounded by fiber curtains to collect light
- Read out via top SiPM

Ge detector Array

Baseline Design:

- 200 Ge det, 19 strings, 10-11 det/string,
- Total mass of Ge detectors: ~225kg
- Top clean room for Ge detector and fiber installation

Ge detectors

- Mass: 1-1.2 kg; Ge-76 > 86%
- Size: $\varphi 80 \times 40 \text{ mm}$
- Dead layer: 0.6 mm
- FWHM : <0.15% @2MeV (~2.5keV)
- Commercial / Home-made

BEGe: Broad Energy Germanium

• ICPC (optional)

- Mass: ~2 kg
- Size: $\varphi 80 \times 80 \text{ mm}$
- Dead layer: 0.6 mm
- Home-made
- Bigger Detector \rightarrow Less Electronics (background)

ICPC: Inverted Coaxial Point Contact

Ge Detectors

- Baseline design
 - Naked enr-BEGe immersed in LAr (veto)
 - Free of traditional vacuum-related structure
- **R&D** (reduce bkg from ${}^{42}\text{Ar}/{}^{42}\text{K}$)
 - Ge crystal sealed in LB acrylic capsule and isolated from LAr
 - Front Electronics on the outer surface of acrylic shell

Enriched Ge detector procurement

- Enriched germanium dioxide (⁷⁶Ge >86%) from Russia in 2021
- Whole technical chain established
- 90kg enriched material arrived and sent to subsequent process

Enriched Ge detector procurement

- Enriched germanium dioxide (⁷⁶Ge >86%) from Russia in 2021
- Whole technical chain established
- 90kg enriched material arrived and sent to subsequent process

详见5.9谢全新报告

Detector R&D

Home-made Ge detector

- Co-axial/BEGe/PPC/ICPC
- Cold finger/Naked immersion

BEGe

PPC

ICPC

Long-term stability: energy resolution

Naked crystal to LN₂

Cold finger cooling

LAr Test Facility

- S1: Operating & Purifying 200L LAr in a closed cycle (2023.12-)
- S2: Studying light yield / transmission of LAr in different impurity levels
- S3: Deploying Ge detectors to test veto efficiency

Material Background Control

Ge detector & FEE:

- Mitigation of cosmic activation on the ground
- Low mass & pure detector structures
- Low background cables or flexible PCB
- CMOS ASIC Front-end Electronics
- Underground fabrication of Ge detectors

Underground Electro-forming copper

- U/Th activity $<10 \mu Bq/kg$
- Free of cosmogenic radioactivity

CDEX-300v Plan

- Enr-Ge detectors test started in 2022 @ CJPL-I
- Test and operate LAr test facility at the end of 2023
- Hall C1 expected to be ready for experiment this fall
- Experimental setup in 2024
- First batch of Ge detector installation and test in 2024

Hall C1 of CJPL-II

Summary

- Searching for $0\nu\beta\beta$ decay plays an essential role in understanding the nature of neutrinos
- CDEX-300v for 76 Ge $0\nu\beta\beta$
 - 225kg enriched Ge detector system at CJPL-II
 - physics goal : $T_{1/2}$ >10²⁷ yr, 90% C.L.
 - first batch of detectors deployed in 2024
- R&D in progress

.

- Detector and electronics
- LAr purification and scintillation light readout
- Material screening and selection

深地实验室

四川凉山, 锦屏山隧道中部 2400米地下,有一处安静地点——中国锦屏地下实验室 在这里,中国高校取得近30项暗物质研究成果; 世界最强流深地核天体物理加速器成功出束 灵敏度、统计精度、曝光量等均在国际领先

Thanks for your attention!

http://cdex.ep.tsinghua.edu.cn

清华大学・二滩水电开发有限责任公司

http://cjpl.tsinghua.edu.cn