The directionality
reconstruction and
particle identification
for atmospheric
neutrinos in JUNO
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* JUNO is a next-generation large liquid-

scintillator detector

* The Central Detector is instrumented with
* 17°612 20-inch Large-PMTs (LPMTs)

25'600 3-inch Small-PMTs (SPMTs)

The PMT system has large optical
coverage (>75%)

It acts like a “video camera”,
which captures the temporal
evolution signals originated from
incident particles.



Motivation

JUNO'’s main physics goal is the determination of neutrino mass ordering.

_ To enhance its sensitivity to the mass ordering, JUNO will
-R- Atmosphere combine the measurements of

* reactor anti-neutrinos at low energies
* atmospheric neutrinos at high energies (GeV level)

Event reconstruction and particle identification for
atmospheric neutrinos are challenging works for liquid
scintillator detectors like JUNO:

~ »  particle trajectory is not directly visible

* Cherenkov light yield is negligible
* Interactions within the detector are complex

For the first time ever, machine learning methods have made

Major flavors: these tasks achievable.
Vi, Vy, Ve, Ve

Isotropic flux of
cosmic rays




Methodology for the directionality reconstruction
and particle identification of atmospheric neutrinos

* The scintillation light received by a PMT is the
superposition of light from many points on particle

. d
tracks inside the detector.

* The directional information of the incident v and
topological information characterizing event - WM p1
Interaction types are reflected in the PMT waveforms. y ”

dat X |l1—npBcos 6|

 Features extracted from waveforms will be used as
Inputs to machine learning models.



PMT waveform feature extraction

* FHT: First hit time.
* Total charge: The
total charge in the

S 4L Maxcharge first readout time
5 35 .
o Extracted \évllndow. )
st feature ope: max charge
of - ' divided by peak time.
151 * Charge ratio: Charge
1;_ FHT In the first 4ns
0;* divided by the total.
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Machine learning models
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* Planar-image-based method: EfficientNetV?2
* Spherical-image-based method: DeepSphere

 3D-based method: PointNet++
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Introduction to models: EfficientNetV2

* The state-of-the-art performance among
CNNs;

 Smaller model size and fast training.

Model input: 2D grid

* The PMT map is projected onto a 2D 6—¢ grid
(according to PMT spherical coordinates);

* The grid size of 128 x 224 for LPMT and
256%x256 for LPMT+SPMT Is chosen to ensure

each grid cell corresponds to at most one PMT.
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EfficientNetV2: arXiv:2104.00298
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https://arxiv.org/pdf/2104.00298.pdf
https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=5,98

Introduction to models: DeepSphere

DeepSphere: a popular tool processing spherical data
originally developed for cosmology studies.

* Maintain rotation covariance;

* Avoid distortions caused by projection to a planar surface.

FHT

* 3072 pixels for JUNO signal
* |f more than one PMTs are grouped into
one pixel, information is merged:
* FHT: the earliest;
* charge: the sum:;

90.443 102.603 * Slope and other: the average.
Chose Nsige=16 (3072 pixels)




Introduction to models: PointNet++

Directly taking 3D point clouds as input

— JUNO signal more resembles point clouds.

Hierarchical point set feature learning

Classification

1
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PointNet++ (taken from C. Qi et al.(2017).)



https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html

v, zenith angle (0) reconstruction results
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v, O reconstruction performance:

comparison between different models

Resolution improves with the increasing of energy.
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V. O reconstruction performance:
comparison between different models

Resolution improves with the increasing of energy.
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Validation with different event generators

The models were trained with GENIE sample. To check model robustness
and estimate systematic uncertainties, different generators (GENIE and
NuWro) are used for validation.

Number of neutron or proton generated at neutrino interaction vertices
for GENIE and NuWro event generators (from MC truth, for v,, CC events):
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In general, NuWro predicts less neutron and proton than GENIE.



Comparison between different neutrino
generators

Difference of o; between NuWro and GENIE results:
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Event level features for particle identification of

atmospheric neutrinos

To distinguish between v and anti-v,

event level features are necessary, which

Include:

Neutron multiplicity
Neutron positions

Distance from the deposit center to
Interaction vertex

Lepton energy ratio for v, /v,
Michel electrons, Isotopes, etc.
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Particle Identification for atmospheric v
with Machine Learning methods

A 5-label classifier is developed to identify v, -CC, v,-CC, v.-CC, v.-CC
and NCv

* for fully contained events
* both PMT and event level features are used

FC layer
nPE, FHT, slope, etc (768/256+42)

MR oy | PointNet++ | =
:; i

Event level features
(number of neutron, electron, etc.)

FC layer 1

FC layer 2
(128)

(64)

— | —) ‘ ) OUTPUT
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5-label classifier results

Balanced data sample is used for trainning; Purity is corrected with true
event ratio

i

- . — Nirue . Nt d*Ratioi
Efficiency = e Purity = =2~ —
i Vtrue i Npred*Ratlo
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(Work Iin progress) 17



Validation with different event generators

Validation with
GENIE sample

Validation with
NuWro sample

(Work Iin progress)
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