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JUNO Experiment

• JUNO is a next-generation large liquid-
scintillator detector

• The Central Detector is instrumented with 
• 17’612  20-inch Large-PMTs (LPMTs) 
• 25’600  3-inch Small-PMTs (SPMTs)
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• The PMT system has large optical 
coverage (>75%)

• It acts like a “video camera”, 
which captures the temporal 
evolution signals originated from 
incident particles.
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Motivation
JUNO’s main physics goal is the determination of neutrino mass ordering.
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To enhance its sensitivity to the mass ordering, JUNO will 
combine the measurements of
• reactor anti-neutrinos at low energies
• atmospheric neutrinos at high energies (GeV level)

Event reconstruction and particle identification for 
atmospheric neutrinos are challenging works for liquid 
scintillator detectors like JUNO:
• particle trajectory is not directly visible
• Cherenkov light yield is negligible
• interactions within the detector are complex
For the first time ever, machine learning methods have made 
these tasks achievable.



Methodology for the directionality reconstruction 
and particle identification of atmospheric neutrinos 
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• The scintillation light received by a PMT is the 
superposition of light from many points on particle 
tracks inside the detector.

• The directional information of the incident 𝝊𝝊 and 
topological information characterizing event 
interaction types are reflected in the PMT waveforms.

• Features extracted from waveforms will be used as 
inputs to machine learning models.



PMT waveform feature extraction
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Waveform signal from one of the PMTs
(first readout,  with waveform 
reconstruction: deconvolution and noise 
removing)

• FHT: First hit time. 
• Total charge: The 

total charge in the 
first readout time 
window.

• Slope: max charge 
divided by peak time.

• Charge ratio: Charge 
in the first 4ns 
divided by the total.

• Max charge, Peak 
Time

Extracted
feature

Animated schematic  of 
the time evolution of 
PMT signals in JUNO 
central detector 
(produced by a 1.67GeV 
atmospheric 𝝊𝝊𝝁𝝁 event)

Features after importance check



3 categories of machine learning methods:

• Planar-image-based method: EfficientNetV2

• Spherical-image-based method: DeepSphere

• 3D-based method: PointNet++
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Machine learning models



Introduction to models: EfficientNetV2
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• The state-of-the-art performance among 
CNNs;

• Smaller model size and fast training.

Model input: 2D grid
• The PMT map is projected onto a 2D θ−ϕ grid 

(according to PMT spherical coordinates);
• The grid size of 128 × 224 for LPMT and 

256×256 for LPMT+SPMT is chosen to ensure 
each grid cell corresponds to at most one PMT.

EfficientNetV2: arXiv:2104.00298

ImageNet models

Total charge First hit time

https://arxiv.org/pdf/2104.00298.pdf
https://paperswithcode.com/sota/image-classification-on-imagenet?tag_filter=5,98


Introduction to models: DeepSphere
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DeepSphere: a popular tool processing spherical data 
originally developed for cosmology studies.

• Maintain rotation covariance;
• Avoid distortions caused by projection to a planar surface. 

• 3072 pixels for JUNO signal
• If more than one PMTs are grouped into 

one pixel, information is merged:
• FHT: the earliest;
• charge: the sum;
• Slope and other: the average.



Introduction to models: PointNet++
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Directly taking 3D point clouds as input

→ JUNO signal more resembles point clouds.

PointNet++ (taken from C. Qi et al.(2017).)

https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html


𝝊𝝊𝝁𝝁 zenith angle (θ) reconstruction results
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EfficientNetV2 PointNet++DeepSphere

(Unpublished results)



𝝊𝝊𝝁𝝁 θ reconstruction performance:
comparison between different models
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RMS 𝝈𝝈𝑮𝑮

Resolution improves with the increasing of energy. 

(Unpublished results)



𝝊𝝊e θ reconstruction performance:
comparison between different models
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RMS 𝝈𝝈𝑮𝑮

Resolution improves with the increasing of energy. 

(Unpublished results)



Validation with different event generators
The models were trained with GENIE sample. To check model robustness 
and estimate systematic uncertainties, different generators (GENIE and 
NuWro) are used for validation.

Number of neutron or proton generated at neutrino interaction vertices 
for GENIE and NuWro event generators (from MC truth, for 𝝂𝝂𝝁𝝁 𝐂𝐂𝐂𝐂 events):
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In general, NuWro predicts less neutron and proton than GENIE.



Comparison between different neutrino 
generators
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Difference of 𝝈𝝈𝑮𝑮 between NuWro and GENIE results:  

𝝊𝝊𝐞𝐞𝝊𝝊𝝁𝝁

(Unpublished results)



Event level features for particle identification of 
atmospheric neutrinos 

To distinguish between 𝜈𝜈 and anti-𝜈𝜈, 

event level features are necessary, which 

include:
• Neutron multiplicity
• Neutron positions
• Distance from the deposit center to 

interaction vertex
• Lepton energy ratio for 𝝂𝝂𝒖𝒖/𝝂𝝂𝒖𝒖
• Michel electrons, Isotopes, etc.
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Particle Identification for atmospheric 𝜈𝜈
with Machine Learning methods 
A 5-label classifier is developed to identify 𝝂𝝂𝝁𝝁 -CC, �𝝂𝝂𝝁𝝁-CC, 𝝂𝝂𝒆𝒆-CC, �𝝂𝝂𝒆𝒆-CC 
and 𝑵𝑵𝑵𝑵 𝝂𝝂
• for fully contained events
• both PMT and event level features are used
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5-label classifier results
Balanced data sample is used for trainning; Purity is corrected with true 
event ratio
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Efficiency =  𝑵𝑵𝒕𝒕𝒕𝒕𝒖𝒖𝒆𝒆𝒊𝒊

∑𝒊𝒊 𝑵𝑵𝒕𝒕𝒕𝒕𝒖𝒖𝒆𝒆
𝒊𝒊 Purity =  

𝑵𝑵𝒑𝒑𝒕𝒕𝒆𝒆𝒑𝒑
𝒊𝒊 ∗𝑹𝑹𝑹𝑹𝒕𝒕𝒊𝒊𝑹𝑹𝒊𝒊

∑𝒊𝒊 𝑵𝑵𝒑𝒑𝒕𝒕𝒆𝒆𝒑𝒑
𝒊𝒊 ∗𝑹𝑹𝑹𝑹𝒕𝒕𝒊𝒊𝑹𝑹𝒊𝒊

(Work in progress)



Validation with different event generators
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Validation with
NuWro sample

Validation with
GENIE sample

(Work in progress)



总结

1. 本报告展示了一套针大型液闪探测器中高能(GeV)事例的多用途的
机器学习算法，这套算法可以用来实现对大气中微子事例的入射方
向的重建和对大气中微子事例类型的鉴别。

2. 对大气中微子事例入射方向的重建：
• 在国际上第一次实现了基于大型液体闪烁体探测器的大气中微子方向重

建；
• 结果的可靠性通过使用不同的机器学习模型和不同类型的事例产生子进

行了检验。

3. 对大气中微子事例类型的鉴别,
• 初期的研究表明，通过结合PMT的波形特征和事例级别的特征（例如中子多重度等）

作为机器学习的输入，可以实现对中微子味道和正反的高效率、高纯度鉴别。
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