Simulations, Background and Sensitivity Estimations for the N ν DEx Experiment

Emilio Ciuffoli

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

May 9, 20203

$N\nu DEx$

No ν Double beta decay Experiment

- High Pressure $^{82}SeF_6$ TCP detector, Q-value=2.996 MeV \Rightarrow higher than most of the natural background
- Signal-background discrimination via event topology
- Topmetal-S sensor to detect negative ions, excellent energy resolution, ${\sim}1\%$ FWHM \Rightarrow ROI: 2.98-3.01 MeV
- Placed at China JinPing Laboratory (CJPL), 2,400 m rock overburden (deepest undeground laboratory in the world) ⇒ background strongly suppressed

Emilio Ciuffoli Simulations for NvDEx 2 / 32

Neutrinoless double beta decay experiments require an extremely low-background environment \Rightarrow a careful study of the background budget is crucial for the success of the experiment

3 main sources of background

- Natural radioactivity \Rightarrow in principle α 's, β 's and γ 's, but the first two are easily shielded, only the latter is relevant
- Cosmogenic activation of the material of the detector \Rightarrow activation rate is negligible underground, but it is a problem on the surface
- Neutron background $\Rightarrow \beta$'s can be created directly in the fiducial volume
- Also: cosmogenic muons background (negligible at CJPL, due to the rock overburden), radon, etc...

*) Q (4

A 20 cm thick lead shield is placed around the detector to stop the γ rays

<日 > < 目

Emilio Ciuffoli Simulations for NvDEx

▶ ◀ ≣ ▶
4 / 32

э

Inner Copper Shield

- Low-radiation oxygen-free copper
- 12 cm thick

- POM insulator layer + POM supporting structure + FPCB
- In the simulations, approximated as 3.5 cm thick plastic cylindrical shell

γ lines

- $\bullet\,$ Main contribution to γ flux from $^{235}{\rm U}$ and $^{232}{\rm Th}$ decays
- Due to the high Q-value, we are above the 2.614 MeV line from $^{232}{\rm Th}$ decay chain ($^{208}{\rm Tl}) \Rightarrow \gamma$ background considerably reduced
- Main contribution from ²³⁵U decay chain (²¹⁴Bi)

Instead of simulating the full decay chain, we took the γ lines information from the ENDF/B-VIII.0 database and wrote a code that create γ 's according to that distribution

 γ lines for $^{235}\mathrm{U}$ and $^{232}\mathrm{Th}$ from ENDF/B-VIII.0 database

γ Background: Radioactive Contamination

Values of radioactivity assumed in the simulations for different part of the geometry (for the materials of the detector, NEXT values were used)

Material	Subsystem	²³⁸ U Activity (mBq/kg)
Concrete	Experimental hall	$6.8 imes 10^{3}$ [1]
Lead	External shielding	0.37 [2]
HDPE	External shielding	0.23 [2]
Steel	Pressure vessel	1.9 [2]
Copper	Inner copper shielding	0.012[2]
РОМ	Field cage	0.23[2]

 H. Ma *et al.*, "In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory.", Astropart. Phys., 128:102560, 2021.
 V. Alvarez *et al.*,"NEXT-100 Technical Design Report (TDR): Executive Summary" NEXT-TDR, JINST,6237:T06001, 2012.

γ Background

The main source of γ background is the field cage and POM insulator, everything else is strongly suppressed by lead and ICS

Total background: 0.29 ± 0.06 events/year without topological cuts ($\simeq (9.7\pm1.9)\times10^{-5} \text{events/keV}$ kg yr). For a comparison, in NEXT, with topological cuts (\simeq a factor 10), the estimated background is $\simeq 8\times10^{-4} \text{events/keV}$ kg yr

Neutron Spectrum

We used the neutron spectrum reported in Q.D. Hu *et al.*, Nucl.Instrum.Meth.A 859 (2017) 37-40

Emilio Ciuffoli

Simulations for N ν DEx

10/32

Neutron Activation

Two possible sources of neutron-induced background: γ emission from neutron capture (discussed later) and β decay in the fiducial volume. SeF₆ \Rightarrow

$$\begin{array}{l} n + \ ^{82}{\rm Se} \to ^{83} \, {\rm Se} \to \bar{\nu}_e + e^- + ^{83} \, {\rm Br} \to \ ^{83}{\rm Kr} + \bar{\nu}_e + e^- \\ n + \ ^{19}{\rm F} \to ^{20} \, {\rm F} \to \bar{\nu}_e + e^- + ^{20} \, {\rm Ne} \end{array}$$

Q-value of ⁸³Se \simeq 3.7,0.9 MeV Q-value of ²⁰F \simeq 7 MeV \Rightarrow major contribution to background, fraction of β in ROI: $\simeq 9 \times 10^{-3}$

• To shield γ 's \Rightarrow high-Z materials (ex: lead)

• To shield neutrons \Rightarrow low-Z atoms (ex: H) \Rightarrow HDPE shield

11/32

HDPE Shield

(a) External

(b) Gap

(c) Internal

< ロ > < 回 > < 回 > < 回 > < 回 >

Emilio Ciuffoli Simulations for NvDEx

æ

²⁰F Background

Using only internal HDPE shield: fast neutron background between 0.07 (full) and 0.15 (20 cm) events/year \Rightarrow lower than γ 's

Neutron Induced Gamma's

 However, neutrons can induce the emission of γ's as well, via (n,γ) or (n,n'γ) reactions.
 For example:

$$^{207}Pb + n
ightarrow ^{208}Pb + \gamma$$

$$m_{207} + m_n - m_{208} \simeq 7 {
m MeV}$$

- If HDPE is inside the lead shield, a large amount of gamma's will be produced in lead, leading to a significant background
- If HDPE is placed inside the lead shield, it will not reduce significantly the background ⇒ external HDPE shield needed (work in progress)

Cosmogenic Activation

- Cosmogenic muons can activate nuclei in the material of the detector on surface
- 56 Co is the most dangerous isotopes, after exposure in Lanzhou, estimated background \sim 3400 events/year.
- \sim 3 years of cooling down underground required for the background to be less than $\gamma{\rm 's}$
- Other isotopes with long enough lifetime have Q-value<3 MeV

Emilio Ciuffoli

isotope	Q (MeV)	T _{1/2}
⁵⁴ Mn	1.4	312d
⁵⁶ Co	4.6	77d
⁵⁷ Co	0.8	272d
⁵⁸ Co	2.3	71d
⁶⁰ Co	2.8	5.3yr

Other Background Sources & Pile-Up

- Other background sources (α and β from radioactivity, radon, cosmic μ , etc...) are estimated to be negligible
- Due to slow drift velocity of ions, pile-up backgrounds could be an issue
- $\bullet\,$ The drift time for 160 cm maximum drift length is ${\sim}7s$
- Estimated assuming events can be separated if they are 10cm×10cm×10cm away
- $\bullet\,$ For natural Se $2\nu 2\beta\,+\,2\nu 2\beta\simeq$ 0.06 evts/yr ROI $<\gamma\,$
- \bullet However, for enriched Se, 8.1 evts/yr ROI \Rightarrow dominant

Summary

- γ backround, with 20 cm lead (and without topological cuts) 0.29 \pm 0.06 events/year.
- $\bullet~^{20}\text{F}$ background ${\sim}0.1~\text{evt/yr}$ with HDPE inside lead
- However neutron-induced γ 's most likely will require HDPE to be placed outside the lead shielding (work in progress)
- Cosmogenic muon activation can be reduced by storing the materials underground

Extremely low-background can be achieved, significantly better than other similar experiments. Very good potential for scalability

• Assuming 0 background, Natural Se $\rightarrow T_{1/2} = 4 \times 10^{25}$ (90%cl, 5 yrs), enriched Se $\rightarrow T_{1/2} = 4 \times 10^{26}$ (90%cl, 5 yrs)

17/32

Backup Slides

æ

Energy Resolution

- Q-value for $^{82}{\rm Se}{=}2.995$ MeV, lonization energy $W_{SeF6}\simeq 32$ eV, \Rightarrow $N_e=2.36\times 10^4$
- Fano Factor \Rightarrow lower bound to the energy resolution (cannot get better than this). For SeF₆, at 3 MeV:

$$\sigma/E = 0.142\%$$
 FWHM/E = $2\sigma\sqrt{Log[4]} = 0.34\%$

- Energy resolution is worsened by the presence of noise, etc...
- Other factors to be taken into account: changing focusing efficiency (need to reach ${\sim}100\%$), sensor temperature variation, etc...
- In the simulations, assumed

$$FWHM = 1\%$$
 $ROI = 2.98 - 3.01 MeV$

Background & $0\nu 2\beta$ Searches

A crucial requirement for any $0\nu 2\beta$ experiment is an extremely low-background environment:

No Background
$$\Rightarrow T_{1/2}^{0\nu} \propto MT$$

Background $\Rightarrow T_{1/2}^{0\nu} \propto \sqrt{\frac{MT}{b\Delta E}}$

- CJPL⇒ Cosmogenic background strongly suppressed
- 82 Se \Rightarrow very high Q-value (2.995 MeV), higher than most of the environmental γ 's
- Better energy resolution without avalanche amplification (1%)FWHM)

20/32

Induced charge on sensor topmetal $Q = C \times U \Rightarrow$ $\Delta Q = \Delta C \times U + C\Delta U$. We want $\Delta Q < 30$, which means

- $\Delta U/U < 2.2 \times 10^{-7}$. For the HV power supply, the best ripple level that can be achieved is $\Delta U/U \simeq 10^{-5}$
- Possible solutions: using low-pass filters or rechargeable batteries
- $\Delta C/C < 2 \times 10^{-7} \Rightarrow \Delta L < 0.3$ micron

Vibrations

In order to avoid fluctuations of charge, must minimize impact of vibrations $\Delta L \to \Delta C$. Consider reducing vibration influence during the design.

- Isolate the pressure chamber with springs etc.
- Avoid large thin planes
- Add supporting structures

Low Pass Filters

For the HV power supply we found, the best ripple level is ΔU / U $=10^{-5}$, we want $\Delta U<10^{-7},$ \Rightarrow use low pass filter

- $\Delta {\rm U}_{\rm out}/\Delta {\rm U}_{\rm in} \le 10^{-2}$
- Assume the major ripple frequency = 50 Hz, $\Rightarrow f_c = 0.5$ Hz \Rightarrow too close to signal time scale
- may consider high-order filters
- Another option is using rechargeable batteries

- Trace of radioactive elements will be present in the rocks surrounding the experimental hall, the walls and the materials of the detector itself.
- The decays of these elements will produce particles that could provide a source of background
- $\alpha~\beta$ and γ will be produced, however the first two are easily stopped, and do can be neglected. We will focus only on γ background
- ⁸²Se has high Q-value \rightarrow ROI: 2.98 < E < 3.01, higher than most of the γ 's from natural radioactivity.
- ²³²Th can be neglected (it's a big problem for Xe-based experiments, however), only relevant isotope is ²³⁸U

γ lines

Main Issue

20 cm lead, only 1 high-energy γ 's every $\sim 10^{12}$ decays hits the detector \Rightarrow large MC sample needed to get decent statistics

- Only $^{214}\rm{Bi}$ (from $^{238}\rm{U}$ decay chain) and $^{208}\rm{TI}$ ($^{232}\rm{Th}$) will create high energy $\gamma{\rm 's}$
- Those will be present in a very small fraction of decays (for $^{214}{\rm Bi},$ only 1 γ out of \sim 1000 will have E>2.7 MeV)

Instead of simulating the full decay chain, we took the γ lines information from the ENDF/B-VIII.0 database and wrote a code that create γ 's according to that distribution

- γ background was studied using Geant4 simulations, fast neutron background using both Geant4 and Fluka simulations
- Fluka is considerably faster for fast neutron simulations, but the implementation of the two-steps system we used for the γ background would be complicated
- For fast neutrons, it is crucial to include the best low-energies cross section available
- For Fluka, this is done using the PRECISION setting
- For Geant4, HP neutron inelastic cross section are contained in the G4HadronPhysicsQGSP_BERT_HP PhysicsLists, HP elastic cross sections can be included using G4HadronElasticPhysicsHP as well

Geometrical Splitting

Each "split" particle should be considered with a weight $w_f = w_i/n$, where n is the number of copies created.

- 20 cm lead shield (ICS) divided into 15 (12) regions, weight= $\frac{1}{2}$ \Rightarrow rescaling factor $2^{25} \sim 3 \times 10^7$
- Two-steps process: I recorded the position and momentum of each γ 's entering the detector, and simulate the energy deposition separately

- If geometrical bias is used, statistical errors are difficult to estimate
- For each configuration, a set of N simulations was run (all with the same MC sample, but the formula can be easily generalized for different MC samples)
- Standard deviation can be estimated as

$$\sigma = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(x_i - \bar{x})^2} \qquad \bar{x} = \frac{1}{N}\sum_{i=1}^{N}x_i$$

Energy Deposition

Very few high-energy $\gamma {\rm 's}$ deposit all their energy in the detector

Neutron-Induced Gamma Background

 γ /year in HDPE and Lead shielding, for different thickness of the HDPE shield (0.1 cm, \sim no HDPE shield, vs 60 cm). All creation processes were taken into account, not just neutron activation (more γ 's can be produced by interaction of γ with matter). You can clearly see the 7.37 MeV peak in lead due to ²⁰⁷Pb, while in HDPE there are the 2.2 MeV peak due to H and 4.9 MeV peak due to C.

New Measurement of Neutron Spectrum

A new neutron spectrum has been presented in some talks (as far as I know, it is not published yet), where the energy response of the detector has been deconvoluted. It is (kind of) consistent at low energies, however there is an excess of high-energy neutrons

Right Panel: new measurement (2018). Left Panel: from Hu, Q et al., Nucl.Instrum.Meth.A 859 (2017) 37-40

New Measurement of Neutron Spectrum

In CJPJ new measurement: neutrons with E > 20 MeV are $\sim 24\%$ of the total flux $(3.7 \times 10^{-5} \text{ cm}^{-2}\text{s}^{-1}) \Rightarrow \sim 10^{-5} \text{ cm}^{-2}\text{s}^{-1}$, however the neutron flux from cosmogenic muons is estimated to be $8.37 \times 10^{-11} \text{ cm}^{-2}\text{s}^{-1}$ (Su Jian *et al.*, High Power Laser and Particle Beams, 24 (12):3015, 2012). This is consistent with other measurements, such as at Gran Sasso (Bruno, Fulgione, Eur.Phys.J.C 79 (2019) 9, 747, measured flux: $7.5 \times 10^{-10} \text{ cm}^{-2}\text{s}^{-1}$, theoretical estimation in Mei, Hime, Phys.Rev.D 73 (2006) 053004.: $7.3 \times 10^{-10} \text{ cm}^{-2}\text{s}^{-1}$).

