Symposium on frontiers of underground and space particle physics and cosmophysics

Cosmogenic background simulation and measurement for ¹⁰⁰Mo-based bolometric experiment at CJPL

Presenter: Wei Chen On behalf of CUPID-CJPL collaboration Fudan University Hangzhou, May.09.2023

- Motivation
- Monte Carlo simulation by Geant4
- Activation calculation with various toolkit
- Background evaluation
- Plan for LMO measurement
- Summary and discussion

Motivation

¹⁰⁰Mo based LMO bolometric demonstration experiment

- > 4×9^{100} Mo enriched Li₂MoO₄ array, total mass 10 kg
- \succ 45 \times 45 \times 45 mm³ 0.28 kg per cubic crystal
- $PQ_{\beta\beta} = 3034.40 \pm 0.17 \text{ keV}$, ROI = (3000, 3060) keV
- Copper and Polyethylene(PE) shields

Background Studies

- Including external background sources and activation in crystal and shielding
- External background sources including environmental radioactivity like ²²²Rn, ²³⁸U et al., cosmic rays
- Environmental radioactivity can be shielded effectively with copper and PE shields
- Activation in crystal and shielding including cosmogenic and intrinsic contamination

2023/05/09

٠

- Q > 3000 keV, long life time radionuclides are ٠ dangerous
- Potential radionuclides: ⁵⁶Co, ⁸²Rb from ⁸²Sr, ⁸⁸Y and ٠ ⁸⁸Y from ⁸⁸Zr

http://www.scifun.ed.ac.uk/card/card-left.html

Motivation

Cosmic ray air showers

- High energy particles hit earth at all time
- Last particles come down to the ground mainly are ps, ns, γ s, μ s

Cosmogenic background sources

Direct influence of cosmic ray at deep underground ٠ laboratory can be ignored Muon vertical intensity at CJPL: $2.0\times 10^{-10}~{\rm cm^{-2}s^{-1}sr^{-1}}$ Z.-y. Guo et al., Chinese Physics C 45, 025001 (2021). Muon at sea level: $6.2 \times 10^{-3} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$

S. Pal et al., JCAP07(2012)033

Cosmic-Ray Shower Generator(CRY)

http://nuclear.llnl.gov/simulation

Hagmann, C., et al. 2007 IEEE Nuclear Science Symposium Conference Record, 2, 1143-1146.

The software library generates correlated cosmic-ray particle shower distributions at one of three elevations(sea level, 2100 m, and 11300 m)

• The cosmic ray distribution at Beijing sea level from J. L. Ma et al.

Cosmic-ray fluxes(cm⁻²s⁻¹) in Beijing and Shanghai sea level

Areas	Neutron	Proton	Gamma	Muon
Beijing (N 40°)	2.00×10^{-3}	1.657×10^{-4}	1.682×10^{-2}	1.182×10^{-2}
Shanghai (N 31°)	$1.726^{+0.136}_{-0.07} \times 10^{-3}$	$1.386^{+0.094}_{-0.046} \times 10^{-4}$	$1.57^{+0.08}_{-0.04} \times 10^{-2}$	$1.134^{+0.054}_{-0.027} \times 10^{-2}$

Geant4 simulation set-up

Detector & Target

Physics List selection

QGSP_BERT_HP

- same as QGSP_BERT, but with high precision neutron model
- □ used for neutrons below 20 MeV
- can be used for radiation protection and shielding applications

Shielding

- based on FTFP_BERT
- □ Mix and match of FTF and BERT at transition region
- JENDL and Barashenkov cross section of neutron used instead

Activation Calculation with Various Toolkit

Activation calculation

- $N(t_1) = \frac{P}{\lambda}(1 e^{-\lambda t_1})$ get the yield after being exposure time t_1
- $N(t_1 + t_2) = \frac{P}{\lambda} (1 e^{-\lambda t_1}) e^{-\lambda t_2}$ get the last yield after cooling time t_2
- For nuclides with cascade the calculation is more complex

Flux of Cosmic-ray

ACTIVIA <u>https://doi.org/10.1016/j.nima.2007.12.008</u>

- > Using parameterization from Armstrong and Gehrels as cosmic ray spectrum input
- Calculating cross section by using data tables and semi-empirical formulae from Silberberg and Tsao

EXPACS <u>https://phits.jaea.go.jp/expacs/</u>

- Represents "EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum"
- Can instantaneously calculate terrestrial cosmic ray fluxes

CRY lower than experimental data below 100 MeV

ACTIVIA lager than CRY at high energy

Production cross section used in Geant4 compatible with experimental data and parameterized formula below 1 GeV

All differences were concluded into system uncertainty

Radionuclide	Target	Half-life (days)	Neutron	Proton	Gamma	Muon	Total	ACTIVIA
⁵⁶ Co	Copper	77.3	6.36 ± 0.51	0.85 ± 0.06	0.10 ± 0.01	0.02 ± 0.00	7.33 ± 0.51	8.70
⁸⁸ Zr	LMO	83.4	5.48 ± 0.43	0.77 ± 0.05	0.10 ± 0.01	0.07 ± 0.00	6.42 ± 0.43	5.18
⁸⁸ Y	LMO	106.6	1.99 ± 0.15	0.28 ± 0.02	0.22 ± 0.01	0.00	2.47 ± 0.15	1.10
⁸² Sr	LMO	25.4	1.85 ± 0.16	0.33 ± 0.02	0.00	0.01 ± 0.00	2.19 ± 0.16	1.25
⁵⁶ Co	LMO	77.3	0.04 ± 0.01	0.03 ± 0.00	0.00	0.00	0.07 ± 0.01	0.04

Production rates (kg⁻¹day⁻¹) at Shanghai sea level

*solar activity in addition

*almost neutron induced

*2 magnitude lower

Neutron induced production rates at New York sea level

Radionuclide	Target	CRY	Gordon2004 ^[1]	ACTIVIA	Ziegler ^[2]	EXPACS
⁵⁶ Co	Copper	8.32	15.75	6.30	14.47	11.98
⁸⁸ Zr	LMO	7.15	14.16	5.72	14.30	11.02
⁸² Sr	LMO	2.39	4.54	2.10	4.19	3.00
⁵⁶ Co	LMO	0.05	0.08	0.15	0.13	0.04

M. S. Gordon, *et al.*, IEEE Trans. Nucl. Sci. **51**, 3427 (2004).
J. F. Ziegler, IBM J. Res. Dev. 42, 117 (1998).

Background Evaluation

Copper shield component

Component	Volume (cm ³)	Mass (kg)
Tower frame	202.0	1.8
Top plate	1590.4	14.2
Top shield	23562.0	209.7
50 mK thermal	2224.7	19.8
4 K thermal	2404.5	21.4
Lateral shield	336000.0	2990.4
Bottom shield	30000.0	267.0

• Energy resolution according to CUPID-Mo:

$$\sigma(E) = \sqrt{0.49 + \left(0.058 \times \sqrt{E}\right)^2}$$

- Most of contribution of ⁵⁶Co in copper from Lateral shield in ROI
- ⁸²Rb(⁸²Sr) and ⁵⁶Co contribute significantly in ROI

Background Evaluation

Background spectrum results

The total energy spectra after cooling time

The background simulation result in ROI after cooling time

Component -	Cooling time(days)					
	90	180	360	720		
Copper	$(3.71 \pm 0.26) \times 10^{-3}$	$(1.65 \pm 0.11) \times 10^{-3}$	$(3.30 \pm 0.23) \times 10^{-4}$	$(1.27 \pm 0.09) \times 10^{-5}$		
LMO	$(2.88 \pm 0.20) \times 10^{-4}$	$(2.78 \pm 0.19) \times 10^{-5}$	$(1.83 \pm 0.13) \times 10^{-6}$	$(1.42 \pm 0.10) \times 10^{-7}$		
Total	$(3.99 \pm 0.26) \times 10^{-3}$	$(1.68 \pm 0.11) \times 10^{-3}$	$(3.32 \pm 0.23) \times 10^{-4}$	$(1.28 \pm 0.09) \times 10^{-5}$		

- We got the total cosmogenic background level of $(3.32 \pm 0.23) \times 10^{-4}$ cts/keV/kg/yr after • cooling for one year
- 100 Mo-based bolometric experiment at CJPL aims at total background $< 10^{-4}\,$ cts/keV/kg/yr .
- To get the goal, longer cooling time and shorter exposure time is necessary. .

Background Evaluation

The neutron and proton produced by muon at CJPL are considered

Long life-time nuclides

Material	Radionuclides	Saturated yield (cts/kg)
Copper	⁵⁶ Co	8.5×10^{-6}
LMO	⁸⁸ Y	1.5×10^{-5}
	⁸⁸ Zr	8.4×10^{-6}

	Isotope	Decay	Q-value	Production
		model	(keV)	Rate(cts/kg/d)
	⁶² Co	Beta-	3013	3.8×10^{-7}
	⁶² Cu	EC	3948.4	1.75×10^{-5}
Copper	⁶⁰ Cu	EC	6127	3.5×10^{-7}
	⁵³ Fe	EC	3742.4	2.4×10^{-7}
	⁵⁷ Ni	EC	3264.3	1.49×10^{-6}
IMO	⁹¹ Mo	EC	4434	2.33×10^{-6}
	⁹⁰ Nb	EC	6111.4	1.4×10^{-6}

Short life-time nuclides

Total background estimated to 10^{-10} cts/kg/keV/yr

HPGe detector could detect the cosmogenic radionuclides activity at CJPL

Detection efficiency simulation

- Detector geometry completed by Z. She et al.
- Add LMO crystals and adjust the number and position
- Get the spectra and evaluate the number that we need

Detection experiment

- Produce number of LMO crystals meet the measurement ٠ requirement
- Transport to CJPL after a long enough exposure
- Measure cosmogenic background directly with HPGe detector at CJPL

Fig. 1 Schematic diagram of placement of OFHC copper bricks in spectrometer: right view (left) and top view (right)

Z. She, et al., The European Physical Journal C 81, 1041 (2021).

What we have done W. Chen, L. Ma, et al, The European Physical Journal C 82, 549 (2022).

✓ Activation of potential cosmogenic radionuclides

7.33, 6.42, 2.47, 2.19 kg⁻¹d⁻¹ for ⁵⁶Co in copper, ⁸⁸Zr, ⁸⁸Y, ⁸²Sr in LMO respectively

- ✓ Evaluation of cosmogenic background level in ROI
 - Total cosmogenic background 3.3×10^{-4} cts/keV/kg/yr in the ROI

What we are doing

- Detection efficiency for HPGe detector simulation
- Cosmogenic activity measurement with HPGe detector at CJPL

