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• Nuclear pairing induces double beta decay 

• Neutrinoless double beta decay reveals Majorana nature of neutrino
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Figure 1.3: Plotted is the nuclear binding energy of atomic number 136 isotopes. The
lowest energy isotope, 136Ba has been set to zero to highlight the energy di↵erences
between the isotopes. It is not energetically allowed for 136Xe to singly decay to 136Cs,
but it can decay to 136Ba, with a Q value (energy di↵erence) for the double beta decay
of 2457.83 keV [73].

than the parent nucleus, and thus are double beta decay to these levels is energetically

allowed.

The half life of beta decays depends on the nuclear structure of the initial and

final state, as well as the operator representing the decay mechanism and a phase

space factor. For the two neutrino mode, this can be written as:
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FIG. 1. (Color online) The ββ decay of 76Ge. The top part shows
the conversion of two neutrons (blue on the left) into two protons (red
on the right) in two-neutrino double-β (2νββ) decay. The bottom part
shows the 0νββ decay where a virtual neutrino is exchanged.

the two decaying nucleons r , the mass number A, and the
closure energy µ [37]. The radial forms are given explicitly
in Ref. [35]. For the heavy-neutrino exchange, the potential
does not depend on µ. For the light-neutrino matrix element
the closure approximation is good to within 10% [38].

The operators for MGT are given to a good approximation
by f (r)σ1σ2τ

−
1 τ−

2 , where f (r)2ν = 1 (in closure), f (r)0ν =
a/r , and f (r)0N = b δ(r) where the constants a and b depend
on A, µ, and the short-range correlation (SRC). The results
discussed below follow from the expansions of the many-
body matrix elements for these three operators in terms of the
particle-hole (ph) in 76As or particle-particle (pp) intermediate
states in 74Ge [56].

The 2ν tensor NME is zero, and the Fermi NME is zero
since isospin is conserved. For 0ν and 0N the Fermi and tensor
parts are both relatively small, and we define a correction factor
for these given by RGT = M/MGT, where M contains all three
terms of Eq. (2). The CI calculations give R0ν

GT = 1.10(3).
Larger values of 1.23 for QRPA [16] and 1.33 for IBM-2 [39]
were obtained with the older calculations. But more recently,
it was found that the 2ν Fermi matrix element was not zero
because isospin was being treated incorrectly in QRPA [25]
and IBM-2 [41]. After this was corrected the new M2ν

F values
are now zero in all methods. The new results for R0ν

GT are
1.10 [25] and 1.19 [29] for QRPA and 1.04 [41] for IBM-2.
Taking these results into account we adopt a correction factor
from the tensor plus Fermi contributions of R0ν

GT = 1.12(7).
The ratio for the heavy neutrino is 1.20 for CI, 1.26 for
QRPA [29], and 1.00 for IBM-2 [41]. The adopted correction
factor is R0N

GT = 1.13(13).

In the following we first focus on results for MGT. At
the end, the total matrix element M will be obtained from
MGT via a product of correction factors R given by M =
[MGT(CI)][RV ][RS][RGT]. RGT is defined above. We start
with the use of SRCs [55] based on the charge dependent
(CD)-Bonn potential [57]. At the end we will give a value
and error for the correction to this RS , based on a range of
assumptions about the SRCs. RV represents the correction
coming from a “vertical” expansion of the CI model space
that includes the effect of orbitals below and above those in
jj44. RV is the main focus of this paper.

The model space for CI and IBM-2 is jj44 that consists
of the four valence orbitals 0f5/2, 1p3/2, 1p1/2, and 0g9/2 for
protons and neutrons. The model spaces for QRPA are the 21
orbitals with oscillator quanta N ! 5 where N = 2n + ℓ for
protons and neutrons. The QRPA results are also given when
the evaluations of the NME are restricted to jj44 and to fpg
(jj44 plus 0f7/2 and 0g7/2). In addition to our own CI cal-
culations with the JUN45 [58] and jj4bpn [59] Hamiltonians,
we will show results from the gcn28:50 Hamiltonian [60] for
2ν [61], 0ν [33], and 0N [62].

The method and parameters used for the QRPA calcula-
tions1 are similar to those used in Ref. [25]. For the particle-
particle channel in order to restore the isospin symmetry, we
follow the formalism introduced in Refs. [23,25] by separately
fitting the T = 0 and T = 1 parts of the interaction. For the
T = 1 part, gT =1

pp = 0.985 is taken to give M2ν
F = 0. For the

T = 0 particle-particle channel, two parameter sets were used:
(a) gT =0

pp = 0.673 reproduces the experimental value for M2ν
GT,

and (b) gT =0
pp = 0.643 gives a value for M2ν

GT that is a factor of
(1/0.75)2 larger than experiment, anticipating that there may
be MBPT corrections beyond QRPA that could reduce the
strength to low-lying states.

Results for the 2νββ NME are shown in Fig. 2. This NME
is completely determined by J π

ph = 1+ intermediate states in
76As. In CI the summation over the intermediate including
the energy denominator (Eq. (2) in Ref. [61]) is obtained
with the strength-function method [63]. The IBM-2 result is
not shown because it uses an approximation for the NME
based on the closure result for the operator σ1σ2τ

−
1 τ−

2 together
with average closure energies from other methods (Eq. (16)
in Ref. [41]). Experiment is reduced by a factor of about
R2ν

V = 0.45 compared to CI. R2ν
V = M2ν/M2ν(CI) denotes the

correction beyond the jj44 model space due to a vertical
expansion that includes correlations from orbitals below and
above the jj44 model space. The QRPA results for jj44 and

1The single-particle energies are taken from a Woods-Saxon
potential with Coulomb corrections. All of the residual interactions
for QRPA are obtained from solutions of the Bruckner G matrix based
on the CD-Bonn one-boson exchange nucleon-nucleon potential. We
solve the BCS equations with the CD-Bonn pairing interactions
adjusted to give the experimental five-point mass pairing gap. The
renormalization factors are gp

pair = 0.858 and gn
pair = 0.978 for 76Ge

and gp
pair = 0.894 and gn

pair = 1.008 for 76Se. For the renormalization
of the QRPA residual interactions, we use gph = 1.0 for the particle-
hole channel.
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in Ref. [35]. For the heavy-neutrino exchange, the potential
does not depend on µ. For the light-neutrino matrix element
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discussed below follow from the expansions of the many-
body matrix elements for these three operators in terms of the
particle-hole (ph) in 76As or particle-particle (pp) intermediate
states in 74Ge [56].

The 2ν tensor NME is zero, and the Fermi NME is zero
since isospin is conserved. For 0ν and 0N the Fermi and tensor
parts are both relatively small, and we define a correction factor
for these given by RGT = M/MGT, where M contains all three
terms of Eq. (2). The CI calculations give R0ν

GT = 1.10(3).
Larger values of 1.23 for QRPA [16] and 1.33 for IBM-2 [39]
were obtained with the older calculations. But more recently,
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because isospin was being treated incorrectly in QRPA [25]
and IBM-2 [41]. After this was corrected the new M2ν
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1.10 [25] and 1.19 [29] for QRPA and 1.04 [41] for IBM-2.
Taking these results into account we adopt a correction factor
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The ratio for the heavy neutrino is 1.20 for CI, 1.26 for
QRPA [29], and 1.00 for IBM-2 [41]. The adopted correction
factor is R0N

GT = 1.13(13).

In the following we first focus on results for MGT. At
the end, the total matrix element M will be obtained from
MGT via a product of correction factors R given by M =
[MGT(CI)][RV ][RS][RGT]. RGT is defined above. We start
with the use of SRCs [55] based on the charge dependent
(CD)-Bonn potential [57]. At the end we will give a value
and error for the correction to this RS , based on a range of
assumptions about the SRCs. RV represents the correction
coming from a “vertical” expansion of the CI model space
that includes the effect of orbitals below and above those in
jj44. RV is the main focus of this paper.

The model space for CI and IBM-2 is jj44 that consists
of the four valence orbitals 0f5/2, 1p3/2, 1p1/2, and 0g9/2 for
protons and neutrons. The model spaces for QRPA are the 21
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protons and neutrons. The QRPA results are also given when
the evaluations of the NME are restricted to jj44 and to fpg
(jj44 plus 0f7/2 and 0g7/2). In addition to our own CI cal-
culations with the JUN45 [58] and jj4bpn [59] Hamiltonians,
we will show results from the gcn28:50 Hamiltonian [60] for
2ν [61], 0ν [33], and 0N [62].

The method and parameters used for the QRPA calcula-
tions1 are similar to those used in Ref. [25]. For the particle-
particle channel in order to restore the isospin symmetry, we
follow the formalism introduced in Refs. [23,25] by separately
fitting the T = 0 and T = 1 parts of the interaction. For the
T = 1 part, gT =1

pp = 0.985 is taken to give M2ν
F = 0. For the

T = 0 particle-particle channel, two parameter sets were used:
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pp = 0.673 reproduces the experimental value for M2ν
GT,

and (b) gT =0
pp = 0.643 gives a value for M2ν

GT that is a factor of
(1/0.75)2 larger than experiment, anticipating that there may
be MBPT corrections beyond QRPA that could reduce the
strength to low-lying states.
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76As. In CI the summation over the intermediate including
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with the strength-function method [63]. The IBM-2 result is
not shown because it uses an approximation for the NME
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in Ref. [41]). Experiment is reduced by a factor of about
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V = 0.45 compared to CI. R2ν
V = M2ν/M2ν(CI) denotes the

correction beyond the jj44 model space due to a vertical
expansion that includes correlations from orbitals below and
above the jj44 model space. The QRPA results for jj44 and

1The single-particle energies are taken from a Woods-Saxon
potential with Coulomb corrections. All of the residual interactions
for QRPA are obtained from solutions of the Bruckner G matrix based
on the CD-Bonn one-boson exchange nucleon-nucleon potential. We
solve the BCS equations with the CD-Bonn pairing interactions
adjusted to give the experimental five-point mass pairing gap. The
renormalization factors are gp
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Background

• A systematic way of describing neutrinoless double beta 
decay has been developed recently 

• Advantages: better controlled errors and hierarchies
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Figure 1. A schematic overview of the effective field theory approach to evaluating the 0νββ-
decay amplitude starting from high-scale ∆L = 2 dynamics. The different colors represent various
effective field theories at different scales. See the main text for more details.

is that ref. [39] ignores the couplings to ππ — which we now know with a fair amount

of certainty [41–44] — and to πN . The LECs of certain four-nucleon operators are also

underestimated by O(16π2), because non-perturbative renormalization is not considered.

We further discuss these and other differences with ref. [39] in appendix F.

2 Lepton number violation in the SM-EFT

Lepton number is an accidental symmetry of the renormalizable part of the SM, which

is violated by higher-dimensional operators. The ∆L = 2 operators relevant for 0νββ

all have odd dimension [13] and we focus on dimension-five, -seven, and -nine operators

that, respectively, scale as Λ−1, Λ−3, and Λ−5, where Λ is the scale at which lepton num-

ber violation arises. At lower energies, after electroweak symmetry breaking (EWSB) and

integrating out heavy SM fields (top, Higgs-, W-, and Z-bosons) the arising effective oper-

ators can have a different canonical dimension due to positive powers of the Higgs vacuum

expectation value, v ≃ 246GeV (the SM-EFT approach assumes Λ≫ v). In particular, at

energies around a few GeV the most important ∆L = 2 operators have canonical dimension

three, six, seven, and nine. To avoid confusion, when discussing the original gauge-invariant

SM-EFT ∆L = 2 operators, we denote their dimensions by dim-n with n = 5, 7, 9. When

discussing the operators after EWSB, which are only SU(3)c × U(1)em invariant, we refer

to them as dim-n operators (without the overline) where n = 3, 6, 7, 9.
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New Physics



Mechanisms

• Different new physics models with broken lepton-number 
conservation could lead to this decay mode 

• L-R symmetric models with see-saw 

• R-parity violating SUSY 

• Extra dimension model 

• …. 
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New Physics

• Dim-5 operator 

• Dim-7 operators
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we estimate the remaining three with naive dimensional analysis. The reader is re-

ferred to table 2 as well as figure 5 which illustrates the impact of the uncertainty

on the unknown low-energy constants on the constraints on a particular ∆L = 2

Wilson coefficient.

• Consistent power-counting in the chiral effective theory for the neutrino potentials

induced by the dimension-seven operators, see table 4. For some operators we find

the first non-zero contributions in 0+ → 0+ transitions to arise at next-to- or next-

to-next-to-leading order in the chiral expansion.

• Long-distance contributions arising from either neutrino or pion exchange. When

the latter is chirally suppressed, subleading short-range pion-nucleon and contact

4-nucleon contributions are considered. The full interference of all effects is included.

We find the master formula to depend on only a handful of nuclear matrix elements,

a smaller set than typically considered, and we perform comparisons of calculations of the

nuclear matrix elements already existing in the literature (see table 5 and figures 3 and 4).

We test our power counting explicitly by comparing the sizes of different matrix elements

and by comparing matrix elements related by symmetry. Bounds on the induced dimension-

six, -seven, and -nine operators, as well as the original dimension-seven operators, are

obtained in section 7 and presented in tables 6 and 7 and range from tens to hundreds

of TeV, assuming a single dimension-seven operator (tables 7 and 6) or single induced

operator (table 6) turned on at a time. In section 8 we discuss scenarios in which both

a light Majorana neutrino mass and a dimension-seven operator contribute to the 0νββ

rate. We study what additional experimental input can be used to disentangle the various

∆L = 2 contributions to 0νββ . We summarize, conclude, and give an outlook in section 9.

2 Dimension-seven SM-EFT operators

The complete list of dimension-seven ∆L = 2 operators, invariant under the gauge group

of the Standard Model, was built in ref. [23], and it is summarized in table 1. A subset

of the operators was published in refs. [37, 38], and a few redundancies were eliminated in

ref. [39]. At the scale of new physics, Λ, we have the following ∆L = 2 Lagrangian

L(∆L=2) = ϵklϵmn(L
T
k C(5)CLm)HlHn +

∑

i

CiOi , v3Ci = O
(
v3

Λ3

)
, (2.1)

where the first term is the dimension-five Weinberg operator, with C(5) a 3 × 3 matrix

in flavor space. Furthermore, i runs over the labels of the operators defined in table 1.

In table 1, L and Q denote the left-handed quark and lepton doublets, L = (νL, eL)T ,

Q = (uL, dL)T , while uR and dR are right-handed quarks, singlet under SU(2)L. H denote

the scalar doublet

H =
v√
2
U(x)

(
0

1 + h(x)
v

)
, (2.2)
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Class 1 ψ2H4 Class 5 ψ4D

OLH ϵijϵmn(LT
i CLm)HjHn(H†H) O(1)

LLd̄uD
ϵij(d̄γµu)(LT

i C(DµL)j)

Class 2 ψ2H2D2 Class 6 ψ4H

O(1)
LHD ϵijϵmn(LT

i C(DµL)j)Hm(DµH)n OLLēH ϵijϵmn(ēLi)(LT
j CLm)Hn

O(2)
LHD ϵimϵjn(LT

i C(DµL)j)Hm(DµH)n O(1)
LLQd̄H

ϵijϵmn(d̄Li)(QT
j CLm)Hn

Class 3 ψ2H3D O(2)
LLQd̄H

ϵimϵjn(d̄Li)(QT
j CLm)Hn

OLHDe ϵijϵmn(LT
i Cγµe)HjHm(DµH)n OLLQ̄uH ϵij(Q̄mu)(LT

mCLi)Hj

Class 4 ψ2H2X O
Leud̄H

ϵij(LT
i Cγµe)(d̄γ

µu)Hj

OLHB ϵijϵmng′(LT
i Cσ

µνLm)HjHnBµν

OLHW ϵij(ϵτ I)mng(LT
i Cσ

µνLm)HjHnW I
µν

Table 1. Basis of ∆L = 2 baryon-number-conserving dimension-seven operators derived in ref. [23].

where v = 246GeV is the scalar field vacuum expectation value (vev), h(x) is the Higgs

field, and U(x) is a SU(2) matrix that encodes the three Goldstone bosons. The covariant

derivative Dµ is defined as Dµ = ∂µ − igstaGa
µ − g τI

2 W
I
µ − g′Y Bµ, where ta and τ I/2

are SU(3) and SU(2) generators, in the representation of the field on which the derivative

acts. Y is the hypercharge quantum number, Y = −1/2 for L and Y = 1/2 for H. ϵ is

a completely antisymmetric tensor, with ϵ12 = +1. C is the charge conjugation matrix,

C = iγ2γ0, which, in this basis, satisfies C = −CT = −C† = −C−1.

All the couplings Ci have lepton flavor indices, which we omit unless explicitly needed,

while the couplings of the four-fermion operators in Classes 5 and 6 also carry indices

for the quark flavors. Here we are only concerned with couplings to the first generation

of quarks.

There are a few special cases in the above operator basis. Firstly, the dimension-five

operator and OLH trivially contribute to 0νββ as they simply gives rise to a Majorana

mass term below the electroweak scale, C(5)O(5)+CLHOLH → v2

2 (C
(5)+ v2

2 CLH)νTCν. The

operator OLHB, and the component of OLHW that is antisymmetric with respect to the

lepton flavor indices, do not give rise to 0νββ at tree level, but are well constrained by

the transition magnetic moments of the neutrinos, as we discuss further in section 7.1.2.

Also, both O(2)
LHD and OLLēH do not induce 0νββ at tree level. For these two operators,

in section 7.1.1 we consider radiative corrections, such as the one-loop mixing onto the

neutrino mass (OLH) and magnetic moment (OLHB and OLHW ) operators. The effects of

OLLēH are however suppressed by three and one power of the electron Yukawa coupling,

respectively. Alternatively, one can study ∆L = 2 decays such as µ+ → e+ν̄eν̄µ [40]. We

briefly discuss bounds on CLLēH arising from muon decay in section 7.1.3.

The remaining operators in table 1 –namely, the following 8 operators O(1)
LHD, OLHDe,

OLHW , O(1)
LLd̄uD

, O(1),(2)
LLQd̄H

, OLLQūH and OLeud̄H — induce tree-level corrections to 0νββ.

Before discussing the effects generated by these operators at the electroweak scale, we
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• Dim-3 operator: mass 

• Dim-6 operators 

• Dim-7 operators 

• Dim-9 operator

EFT is a useful tool to provide more complete description 
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The structure of the gauge-invariant ∆L = 2 operators has been discussed in great

detail in the literature [14, 20–24]. The only dim-5 operator is the Weinberg operator [14]

which, after EWSB, gives rise to the neutrino Majorana mass. The 12 operators that

appear at dim-7 have been classified in ref. [23] and were studied in the context of 0νββ in

detail in ref. [25]. The complete set of dim-9 operators is currently unknown, but certain

subclasses with particular field content have been constructed [22, 24]. For instance, ref. [24]

identified the dim-9 operators consisting of four quark fields and two electron fields, finding

that only eleven such operators exist. However, additional classes of dim-9 operators can

be constructed that give rise to unsuppressed 0νββ. Examples are operators involving two

quark fields, two electron fields, and the combination of Higgs fields and derivatives ϕ̃†Dµϕ.

While these operators require the exchange of a W boson to induce 0νββ, the associated

factor of GF is compensated by two powers of v arising from the two ϕ fields after EWSB.

Here we do not list the gauge-invariant dim-n operators but refer to refs. [14, 20–25]

for more details. Instead we focus on the ∆L = 2 Lagrangian after EWSB and integrating

out the heavy SM degrees of freedom. At a scale slightly below the electroweak scale, the

Lagrangian consists of SU(3)c×U(1)em operators of increasing dimension. For applications

to 0νββ it is convenient to organize the Lagrangian in operators that violate the number

of charged leptons by zero, one, or two units

L∆L=2 = L∆e=0 + L∆e=1 + L∆e=2 . (2.1)

L∆e=0 contains operators that violate lepton number in the neutrino sector, starting from

the dim-3 Majorana mass of left-handed neutrinos

L∆e=0 = −
1

2
(mν)ij ν

T
L, iCνL, j + . . . (2.2)

The SU(2)L × U(1)Y invariance of the SM implies that the first contribution to mν arises

from a dim-5 operator, such that mν ∼ v2/Λ. The dots in eq. (2.2) denote operators

of higher dimension, such as the dim-5 neutrino magnetic moment or dim-6 LNV neutral-

current semileptonic operators. In order to induce 0νββ, the two neutrinos in the operators

in L∆e=0 need to be converted into electrons via the SM weak interaction. The contribu-

tions to 0νββ from higher-dimensional operators in eq. (2.2) are thus suppressed at least

by powers of Λ2
χ/v

2 (if not m2
π/v

2), where Λχ ∼ 1GeV is the chiral-symmetry-breaking

scale [45], with respect to mν . We therefore neglect these effects in this work.

A richer set of contributions arises from L∆e=1. This Lagrangian contains LNV opera-

tors with one charged lepton and one neutrino field. In order to compensate the charge of

the electron field, one needs at least an additional quark or lepton bilinear, making dim-6

the minimal dimension of these operators:

L∆e=1 = L(6)
∆L=2 + L(7)

∆L=2 + . . . (2.3)

The operators most relevant to 0νββ are semileptonic four-fermion operators. At dim-6

we have

L(6)
∆L=2 =

2GF√
2

(
C(6)
VL,ij ūLγ

µdL ēR,i γµCν̄
T
L,j + C(6)

VR,ij ūRγ
µdR ēR,i γµCν̄

T
L,j (2.4)

+C(6)
SR,ij ūLdR ēL,iCν̄

T
L,j + C(6)

SL,ij ūRdL ēL,iCν̄
T
L,j

+C(6)
T,ij ūLσ

µνdR ēL,iσµν Cν̄
T
L,j

)
+ h.c.
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L(6)
∆L=2 contains all possible ∆L = 2 dim-6 charged-current operators. At tree level, all

operators in eq. (2.4) receive their first contributions from dim-7 operators [25], so that

C(6)
i = O(v3/Λ3). Beyond tree level, the operators in eq. (2.4) might also receive contribu-

tions of O(v/Λ) from the neutrino Majorana mass, but we neglect these loop corrections

here. Dim-7 operators in L∆e=1 give rise to corrections that are suppressed by Λχ/v with

respect to the dim-6 terms of eq. (2.4). Here we consider only the subset of SU(3)c×U(1)em
invariant dim-7 operators that receive tree-level matching coefficients at the EW scale from

dim-7 operators [25]

L(7)
∆L=2 =

2GF√
2v

(
C(7)
VL,ij ūLγ

µdL ēL,iC i
←→
∂ µν̄

T
L,j+C(7)

VR,ij ūRγ
µdR ēL,iCi

←→
∂ µν̄

T
L,j

)
+h.c. (2.5)

The coefficients of these operators scale as C(7)
i = O(v3/Λ3). Operators of higher dimension

in eq. (2.3), such as dim-8 dipole operators or dim-9 charged-current six-fermion operators,

give rise to contributions that are more and more suppressed by powers of Λχ/v and v/Λ.

The final class of operators are LNV operators with two electrons, which can directly

contribute to 0νββ without additional SM weak interactions. U(1)em invariance forces

these operators to be at least dim-9

L∆e=2 = L(9)
∆L=2 + . . . (2.6)

The set of SU(3)c × U(1)em invariant four-quark two-lepton operators can be written

as [21, 24]

L(9)
∆L=2 =

1

v5

∑

i

[(
C(9)
iR ēRCēTR + C(9)

iL ēLCēTL

)
Oi + C(9)

i ēγµγ5CēT Oµ
i

]
, (2.7)

where Oi and Oµ
i are four-quark operators that are Lorentz scalars and vectors, respectively.

The scalar operators have been discussed in refs. [21, 24] and can be written as

O1 = q̄αLγµτ
+qαL q̄βLγ

µτ+qβL , O′
1 = q̄αRγµτ

+qαR q̄βRγ
µτ+qβR , (2.8)

O2 = q̄αRτ
+qαL q̄βRτ

+qβL , O′
2 = q̄αLτ

+qαR q̄βLτ
+qβR , (2.9)

O3 = q̄αRτ
+qβL q̄βRτ

+qαL , O′
3 = q̄αLτ

+qβR q̄βLτ
+qαR , (2.10)

O4 = q̄αLγµτ
+qαL q̄βRγ

µτ+qβR , (2.11)

O5 = q̄αLγµτ
+qβL q̄βRγ

µτ+qαR , (2.12)

where τ± = (τ1 ± iτ2)/2 with τi the Pauli matrices and α, β are color indices. The O′
i

operators are related to the Oi by parity. The vector operators take the form [24]

Oµ
6 =

(
q̄Lτ

+γµqL
) (

q̄Lτ
+qR

)
, Oµ ′

6 =
(
q̄Rτ

+γµqR
) (

q̄Rτ
+qL

)
,

Oµ
7 =

(
q̄Lt

aτ+γµqL
) (

q̄Lt
aτ+qR

)
, Oµ ′

7 =
(
q̄Rt

aτ+γµqR
) (

q̄Rt
aτ+qL

)
,

Oµ
8 =

(
q̄Lτ

+γµqL
) (

q̄Rτ
+qL

)
, Oµ ′

8 =
(
q̄Rτ

+γµqR
) (

q̄Lτ
+qR

)
,

Oµ
9 =

(
q̄Lt

aτ+γµqL
) (

q̄Rt
aτ+qL

)
, Oµ ′

9 =
(
q̄Rt

aτ+γµqR
) (

q̄Lt
aτ+qR

)
, (2.13)

where the second column of operators is related to the first column by a parity

transformation.
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iR ēRCēTR + C(9)

iL ēLCēTL
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i

]
, (2.7)

where Oi and Oµ
i are four-quark operators that are Lorentz scalars and vectors, respectively.

The scalar operators have been discussed in refs. [21, 24] and can be written as

O1 = q̄αLγµτ
+qαL q̄βLγ

µτ+qβL , O′
1 = q̄αRγµτ

+qαR q̄βRγ
µτ+qβR , (2.8)

O2 = q̄αRτ
+qαL q̄βRτ

+qβL , O′
2 = q̄αLτ

+qαR q̄βLτ
+qβR , (2.9)

O3 = q̄αRτ
+qβL q̄βRτ

+qαL , O′
3 = q̄αLτ

+qβR q̄βLτ
+qαR , (2.10)

O4 = q̄αLγµτ
+qαL q̄βRγ

µτ+qβR , (2.11)

O5 = q̄αLγµτ
+qβL q̄βRγ

µτ+qαR , (2.12)

where τ± = (τ1 ± iτ2)/2 with τi the Pauli matrices and α, β are color indices. The O′
i

operators are related to the Oi by parity. The vector operators take the form [24]

Oµ
6 =

(
q̄Lτ

+γµqL
) (

q̄Lτ
+qR

)
, Oµ ′

6 =
(
q̄Rτ

+γµqR
) (

q̄Rτ
+qL

)
,

Oµ
7 =

(
q̄Lt

aτ+γµqL
) (

q̄Lt
aτ+qR

)
, Oµ ′

7 =
(
q̄Rt

aτ+γµqR
) (

q̄Rt
aτ+qL

)
,

Oµ
8 =

(
q̄Lτ

+γµqL
) (

q̄Rτ
+qL

)
, Oµ ′

8 =
(
q̄Rτ

+γµqR
) (

q̄Lτ
+qR

)
,

Oµ
9 =

(
q̄Lt

aτ+γµqL
) (

q̄Rt
aτ+qL

)
, Oµ ′

9 =
(
q̄Rt

aτ+γµqR
) (

q̄Lt
aτ+qR

)
, (2.13)

where the second column of operators is related to the first column by a parity

transformation.

– 8 –

Cirigliano 18’



Matching at nucleon level



Operators for free nucleons

• Matching following χEFT technique for dim-6,7 operator 

• Lepton parts are treated as external currents

�10

J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

4.4 One-body currents for β decays

We now summarize the single β decay amplitude, which provides the building blocks nec-

essary to construct the full 0νββ amplitude. The single β decay amplitude involves two

types of diagrams, which either involve a single vertex or a single pion exchange between

the lepton and nucleon line. Using the Lagrangians constructed in the previous sections,

we write the amplitude as

An→pe−ν = N̄τ+
[
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − s JS + ip JP + tRµν J

µν
T

]
N , (4.13)

with the sources given in eq. (4.2). As discussed in section 4.3, for some operators we will

need expressions through NLO in the chiral expansion. Up to NLO, the currents become

Jµ
V = gV (q

2)

(
vµ +

pµ + p′µ

2mN

)
+

igM (q2)

mN
εµναβvαSβqν ,

Jµ
A = −gA(q2)

(
2Sµ − vµ

2mN
2S · (p+ p′)

)
+

gP (q2)

2mN
2qµ S · q ,

JS = gS(q
2) ,

JP = B
gP (q2)

mN
S · q ,

Jµν
T = −2gT (q2)εµναβ

(
vα +

pα + p′α
2mN

)
Sβ − i

g′T (q
2)

2mN
(vµqν − vνqµ) . (4.14)

Here p and p′ stand for the momentum of the incoming neutron and outgoing proton,

respectively, and qµ = (q0, q) = pµ − p′µ. Furthermore, εµναβ is the totally antisymmetric

tensor, with ε0123 = +1. At LO in χPT the form factors are given by

gV (q
2) = gV = 1 , gA(q

2) = gA = 1.27 , gM (q2) = 1 + κ1 ,

gS(q
2) = − 4Bc5 =

(mn −mp)str
md −mu

, gP (q
2) = − gA

2mN

q2 +m2
π
,

gT (q
2) = gdT − guT ≃ 1 , g′T (q

2) ≃ 1 , (4.15)

where we followed the normalization of ref. [66].

Vector current conservation enforces gV (0) = 1, up to small isospin-breaking correc-

tions. For gA and κ1 we used the experimental values [58]. There is some disagreement

in the literature on the value of gM (0), with some authors using gM (0) = κ1 = 3.7, rather

than the correct gM (0) = 1 + κ1 = 4.7. The error appears to stem from one of the first

papers that studied the contribution of weak magnetism [67], which did not account for

the non-anomalous contribution to the isovector nucleon magnetic moment in the non-

relativistic limit. We notice that earlier papers, such as [18, 68], correctly use gM (0) = 4.7.

The isovector scalar charge gS(0) is related to the quark mass contribution to the neutron-

proton mass splitting [69]. Using (mn−mp)|str = 2.32MeV [70] andmd−mu = 2.5MeV [58]

gives gS(0) = 0.93, at the renormalization scale µ = 2GeV, in very good agreement with
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In addition, the Lagrangian has operators with pions, nucleons, and two electrons, but

no neutrinos (see figure 2(c)), which give pion-exchange and short-range contact contribu-

tions to 0νββ. In this case new LECs arise from the hadronization of four-quark operators.

In the case of purely mesonic operators, these LECs are well determined [56, 57]. For

pion-nucleon and nucleon-nucleon operators at the moment they can only be estimated

with NDA.

In section 5 we then use the Lagrangian constructed in section 4 to derive the two-

nucleon operators (the so-called “neutrino potentials”) that mediate 0νββ.

4.1 The ∆L = 2 chiral Lagrangian

After evolving the ∆L = 2 operators to low energies, µ ∼ 2GeV, we match them to

χPT. The construction of the chiral Lagrangian closely follows that of the standard χPT

Lagrangians [47]. We describe the pions by

U = u2 = exp

(
iπ · τ
F0

)
, (4.1)

where τi are the Pauli matrices, F0 is the pion decay constant in the chiral limit, and

we use Fπ = 92.2MeV for the physical decay constant. We also introduce the nucleon

doublet N = (p n)T in terms of the proton (p) and neutron (n) fields. The pions transform

as U → LUR† and u → LuK† = KuR† under SU(2)L × SU(2)R transformations, while

the nucleon doublet transforms as N → KN . Additional ingredients are external scalar,

vector, and tensor sources in the quark-level Lagrangian, which, for our purposes, take the

following form

s+ ip = −2GF√
2

[
C(6)
SL (τ+) ēLCν̄

T
L + C(6)∗

SR (τ−) νTLCeL
]
,

s− ip = −2GF√
2

[
C(6)
SR (τ+) ēLCν̄

T
L + C(6)∗

SL (τ−) νTLCeL
]
,

lµ =
2GF√
2v

(τ+)

[
− 2vVudēLγµνL + v C(6)

VL ēRγµCν̄
T
L + C(7)

VL ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

rµ =
2GF√
2v

(τ+)

[
v C(6)

VR ēRγµCν̄
T
L + C(7)

VR ēLCi
←→
∂ µν̄

T
L

]
+ h.c. ,

tµνR =
2GF√

2
(τ+)C(6)

T ēLσ
µνCν̄TL , (4.2)

where τ± = (τ1 ± iτ2)/2. The chiral Lagrangian is then given by chiral invariants con-

structed from the meson and baryon fields and the above spurions, which transform as

follows, rµ → RrµR†, lµ → LlµL†, s + ip → R(s + ip)L†, s − ip → L(s − ip)R†, and

tµνR → LtµνR R†. The dimension-9 operators, C(9)
1 and C(9)

4,5 , can not be written in terms of

the above sources and additional chiral constructions are required. The former transforms

as 5L × 1R while C(9)
4,5 transform as 3L × 3R. We will discuss their chiral representations

separately below.
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Figure 2. Schematic representation of the diagrams contributing to the neutrino potentials. Double
and single lines denote, respectively, nucleon and lepton fields. The black square denotes an insertion
of the neutrino Majorana mass, while the gray squares denote the ∆L = 2 interactions between
nucleons, pion, and leptons induced by the dimension-seven operators discussed in section 4.1. The
gray circle denotes SM interactions between nucleons, pion, and leptons.

the ∆L = 2 charged current interactions in eqs. (3.2) and (3.3). These contributions are

obtained by combining the one-body currents of the previous section. Finally, operators

such as O(1)
LHD and OLLd̄uD induce six-fermion dimension-nine operators at the GeV scale,

whose contribution to 0νββ decays is represented by the third diagram in figure 2. These

diagrams do not involve the exchange of a neutrino.

For each operator, we will construct the dominant contribution to 0+ → 0+ transitions,

within the framework of chiral EFT. The application of chiral EFT is justified by the

separation of the scales involved in 0νββ where the typical momentum exchange between

the nucleons is of similar size as the Fermi momentum within nuclei q ∼ kF ∼ mπ =

O(100MeV), which is much larger than the reaction Q value, typically around a few MeV.

For the diagrams in figure 2(a) and (b), the LO neutrino potential is obtained by

tree-level neutrino exchange. This involves the single-nucleon currents, represented by

the gray circle and square in figure 2, at the lowest order that yields non-vanishing results.

Analogously to the strong-interaction potential, the two-body transition operators in chiral

EFT are only sensitive to the momentum scale q ∼ kF , and are therefore independent of

the properties of the bound states. In particular this implies that the transition operators

do not depend on the often used “closure energy” Ē, which encodes the average energy

difference between intermediate and initial states. This can be understood from figure 2.

An insertion of the strong-interaction potential between the emission and absorption of the

neutrino in figure 2(a) or (b) would generate a diagram which, in the language of section 4,

is irreducible. That is, it is always possible to choose the contour of integration such that

the energy and momentum of the nucleons in the loop have to be ∼ kF , and the nucleon

is far from on-shell. Insertions of the strong interaction potential between the emission

and absorption of the neutrino, which would give rise to intermediate nuclear states, are

therefore suppressed and can be ignored at LO. Instead, in chiral EFT the dependence on

the intermediate states arises from the region where the neutrino momentum is very soft

q0 ∼ |q| ≪ kF . The exchange of soft neutrinos gives rise to effects that are suppressed

by Ē/kF [65]. Notice that the situation is different from 2νββ decay, where insertions of

the strong interaction potential between the two points where the neutrinos are emitted

are not suppressed (in between the first and second neutrino emission, there are only

propagating nucleons and the diagrams are “reducible”), and the intermediate states do

need to be considered.
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Figure 2. Schematic representation of the diagrams contributing to the neutrino potentials. Double
and single lines denote, respectively, nucleon and lepton fields. The black square denotes an insertion
of the neutrino Majorana mass, while the gray squares denote the ∆L = 2 interactions between
nucleons, pion, and leptons induced by the dimension-seven operators discussed in section 4.1. The
gray circle denotes SM interactions between nucleons, pion, and leptons.

the ∆L = 2 charged current interactions in eqs. (3.2) and (3.3). These contributions are

obtained by combining the one-body currents of the previous section. Finally, operators

such as O(1)
LHD and OLLd̄uD induce six-fermion dimension-nine operators at the GeV scale,

whose contribution to 0νββ decays is represented by the third diagram in figure 2. These

diagrams do not involve the exchange of a neutrino.

For each operator, we will construct the dominant contribution to 0+ → 0+ transitions,
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separation of the scales involved in 0νββ where the typical momentum exchange between

the nucleons is of similar size as the Fermi momentum within nuclei q ∼ kF ∼ mπ =

O(100MeV), which is much larger than the reaction Q value, typically around a few MeV.

For the diagrams in figure 2(a) and (b), the LO neutrino potential is obtained by

tree-level neutrino exchange. This involves the single-nucleon currents, represented by

the gray circle and square in figure 2, at the lowest order that yields non-vanishing results.

Analogously to the strong-interaction potential, the two-body transition operators in chiral

EFT are only sensitive to the momentum scale q ∼ kF , and are therefore independent of

the properties of the bound states. In particular this implies that the transition operators

do not depend on the often used “closure energy” Ē, which encodes the average energy

difference between intermediate and initial states. This can be understood from figure 2.

An insertion of the strong-interaction potential between the emission and absorption of the

neutrino in figure 2(a) or (b) would generate a diagram which, in the language of section 4,

is irreducible. That is, it is always possible to choose the contour of integration such that

the energy and momentum of the nucleons in the loop have to be ∼ kF , and the nucleon

is far from on-shell. Insertions of the strong interaction potential between the emission

and absorption of the neutrino, which would give rise to intermediate nuclear states, are

therefore suppressed and can be ignored at LO. Instead, in chiral EFT the dependence on

the intermediate states arises from the region where the neutrino momentum is very soft

q0 ∼ |q| ≪ kF . The exchange of soft neutrinos gives rise to effects that are suppressed
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Figure 2. The different contributions of dim-9 LNV operators to the 0νββ potential, first discussed
in refs. [21, 54–56]. Double, dashed, and single lines denote, respectively, nucleon, pion, and lepton
fields. The black square denotes ∆L = 2 ππ, πN , and NN operators, discussed in sections 3.1
and 3.2. The remaining vertices are SM interactions between nucleons and pions.

3.1 Scalar dim-9 operators

The scalar operators O1–O5 generate the ππee, πNNee, and NN NN ee LNV couplings

shown in figure 2. The operators O2,3,4,5 induce non-derivative pionic operators, while the

first pionic operators induced by O1 contain two derivatives and are therefore relatively

suppressed. The mesonic chiral Lagrangian2 for O1,2,3,4,5 is

Lscalar
π =

F 4
0

4

[
5

3
gππ1 C(9)

1L Lµ
21L21µ +

(
gππ2 C(9)

2L + gππ3 C(9)
3L

)
Tr
(
Uτ+Uτ+

)

+
(
gππ4 C(9)

4L + gππ5 C(9)
5L

)
Tr
(
Uτ+U †τ+

)] ēLCēTL
v5

+ (L↔ R)

=
F 2
0

2

[
5

3
gππ1 C(9)

1L ∂µπ
−∂µπ− +

(
gππ4 C(9)

4L + gππ5 C(9)
5L − gππ2 C(9)

2L − gππ3 C(9)
3L

)
π−π−

]

× ēLCēTL
v5

+ (L↔ R) + . . . , (3.1)

where U = u2 = exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the

pion decay constant in the chiral limit, and Lµ = iUDµU †. We use Fπ = 92.2MeV for

the physical pion decay constant. By NDA the LECs of the non-derivative pion operators

are expected to be gππ2,3,4,5 = O(Λ2
χ), while gππ1 = O(1). These expectations are very well

respected by the extractions of ref. [42–44] based on chiral symmetry and lattice QCD

results. In table 1 we give the value of the LECs at µ = 2GeV in the MS scheme,

obtained in ref. [44]. The physical amplitudes are scale and scheme independent provided

one uses Wilson coefficients C(9)
i evaluated at the same scale and in the same scheme as

used for the gππi .

The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAg

πN
1 C(9)

1L F 2
0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5
+ (L↔ R)

=
√
2gAg

πN
1 C(9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L↔ R) + . . . , (3.2)

2The ππ couplings defined here are related to those of refs. [25, 31, 43] by gππ
1 = g27×1, g

ππ
2 = g6×6̄,

gππ
3 = gmix

6×6̄, g
ππ
4 = g8×8, g

ππ
5 = gmix

8×8, while for the πN and NN couplings we have gπN
1 = gπN

27×1 and gNN
1 =

gNN
27×1. The notation of refs. [25, 31, 43] emphasizes the transformation properties under SU(3)L × SU(3)R.
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Figure 2. The different contributions of dim-9 LNV operators to the 0νββ potential, first discussed
in refs. [21, 54–56]. Double, dashed, and single lines denote, respectively, nucleon, pion, and lepton
fields. The black square denotes ∆L = 2 ππ, πN , and NN operators, discussed in sections 3.1
and 3.2. The remaining vertices are SM interactions between nucleons and pions.

3.1 Scalar dim-9 operators

The scalar operators O1–O5 generate the ππee, πNNee, and NN NN ee LNV couplings

shown in figure 2. The operators O2,3,4,5 induce non-derivative pionic operators, while the

first pionic operators induced by O1 contain two derivatives and are therefore relatively

suppressed. The mesonic chiral Lagrangian2 for O1,2,3,4,5 is

Lscalar
π =

F 4
0

4

[
5

3
gππ1 C(9)

1L Lµ
21L21µ +

(
gππ2 C(9)

2L + gππ3 C(9)
3L

)
Tr
(
Uτ+Uτ+

)

+
(
gππ4 C(9)

4L + gππ5 C(9)
5L

)
Tr
(
Uτ+U †τ+

)] ēLCēTL
v5

+ (L↔ R)

=
F 2
0

2

[
5

3
gππ1 C(9)

1L ∂µπ
−∂µπ− +

(
gππ4 C(9)

4L + gππ5 C(9)
5L − gππ2 C(9)

2L − gππ3 C(9)
3L

)
π−π−

]

× ēLCēTL
v5

+ (L↔ R) + . . . , (3.1)

where U = u2 = exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the

pion decay constant in the chiral limit, and Lµ = iUDµU †. We use Fπ = 92.2MeV for

the physical pion decay constant. By NDA the LECs of the non-derivative pion operators

are expected to be gππ2,3,4,5 = O(Λ2
χ), while gππ1 = O(1). These expectations are very well

respected by the extractions of ref. [42–44] based on chiral symmetry and lattice QCD

results. In table 1 we give the value of the LECs at µ = 2GeV in the MS scheme,

obtained in ref. [44]. The physical amplitudes are scale and scheme independent provided

one uses Wilson coefficients C(9)
i evaluated at the same scale and in the same scheme as

used for the gππi .

The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAg

πN
1 C(9)

1L F 2
0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5
+ (L↔ R)

=
√
2gAg

πN
1 C(9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L↔ R) + . . . , (3.2)

2The ππ couplings defined here are related to those of refs. [25, 31, 43] by gππ
1 = g27×1, g

ππ
2 = g6×6̄,

gππ
3 = gmix

6×6̄, g
ππ
4 = g8×8, g

ππ
5 = gmix

8×8, while for the πN and NN couplings we have gπN
1 = gπN

27×1 and gNN
1 =

gNN
27×1. The notation of refs. [25, 31, 43] emphasizes the transformation properties under SU(3)L × SU(3)R.
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Figure 2. The different contributions of dim-9 LNV operators to the 0νββ potential, first discussed
in refs. [21, 54–56]. Double, dashed, and single lines denote, respectively, nucleon, pion, and lepton
fields. The black square denotes ∆L = 2 ππ, πN , and NN operators, discussed in sections 3.1
and 3.2. The remaining vertices are SM interactions between nucleons and pions.

3.1 Scalar dim-9 operators

The scalar operators O1–O5 generate the ππee, πNNee, and NN NN ee LNV couplings

shown in figure 2. The operators O2,3,4,5 induce non-derivative pionic operators, while the

first pionic operators induced by O1 contain two derivatives and are therefore relatively

suppressed. The mesonic chiral Lagrangian2 for O1,2,3,4,5 is

Lscalar
π =

F 4
0

4

[
5

3
gππ1 C(9)

1L Lµ
21L21µ +

(
gππ2 C(9)

2L + gππ3 C(9)
3L

)
Tr
(
Uτ+Uτ+

)

+
(
gππ4 C(9)

4L + gππ5 C(9)
5L

)
Tr
(
Uτ+U †τ+

)] ēLCēTL
v5

+ (L↔ R)

=
F 2
0

2

[
5

3
gππ1 C(9)

1L ∂µπ
−∂µπ− +

(
gππ4 C(9)

4L + gππ5 C(9)
5L − gππ2 C(9)

2L − gππ3 C(9)
3L

)
π−π−

]

× ēLCēTL
v5

+ (L↔ R) + . . . , (3.1)

where U = u2 = exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the

pion decay constant in the chiral limit, and Lµ = iUDµU †. We use Fπ = 92.2MeV for

the physical pion decay constant. By NDA the LECs of the non-derivative pion operators

are expected to be gππ2,3,4,5 = O(Λ2
χ), while gππ1 = O(1). These expectations are very well

respected by the extractions of ref. [42–44] based on chiral symmetry and lattice QCD

results. In table 1 we give the value of the LECs at µ = 2GeV in the MS scheme,

obtained in ref. [44]. The physical amplitudes are scale and scheme independent provided

one uses Wilson coefficients C(9)
i evaluated at the same scale and in the same scheme as

used for the gππi .

The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAg

πN
1 C(9)

1L F 2
0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5
+ (L↔ R)

=
√
2gAg

πN
1 C(9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L↔ R) + . . . , (3.2)

2The ππ couplings defined here are related to those of refs. [25, 31, 43] by gππ
1 = g27×1, g

ππ
2 = g6×6̄,

gππ
3 = gmix

6×6̄, g
ππ
4 = g8×8, g

ππ
5 = gmix

8×8, while for the πN and NN couplings we have gπN
1 = gπN

27×1 and gNN
1 =

gNN
27×1. The notation of refs. [25, 31, 43] emphasizes the transformation properties under SU(3)L × SU(3)R.
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Figure 2. The different contributions of dim-9 LNV operators to the 0νββ potential, first discussed
in refs. [21, 54–56]. Double, dashed, and single lines denote, respectively, nucleon, pion, and lepton
fields. The black square denotes ∆L = 2 ππ, πN , and NN operators, discussed in sections 3.1
and 3.2. The remaining vertices are SM interactions between nucleons and pions.

3.1 Scalar dim-9 operators

The scalar operators O1–O5 generate the ππee, πNNee, and NN NN ee LNV couplings

shown in figure 2. The operators O2,3,4,5 induce non-derivative pionic operators, while the

first pionic operators induced by O1 contain two derivatives and are therefore relatively

suppressed. The mesonic chiral Lagrangian2 for O1,2,3,4,5 is

Lscalar
π =

F 4
0

4

[
5

3
gππ1 C(9)

1L Lµ
21L21µ +

(
gππ2 C(9)

2L + gππ3 C(9)
3L

)
Tr
(
Uτ+Uτ+

)

+
(
gππ4 C(9)

4L + gππ5 C(9)
5L

)
Tr
(
Uτ+U †τ+

)] ēLCēTL
v5

+ (L↔ R)

=
F 2
0

2

[
5

3
gππ1 C(9)

1L ∂µπ
−∂µπ− +

(
gππ4 C(9)

4L + gππ5 C(9)
5L − gππ2 C(9)

2L − gππ3 C(9)
3L

)
π−π−

]

× ēLCēTL
v5

+ (L↔ R) + . . . , (3.1)

where U = u2 = exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the

pion decay constant in the chiral limit, and Lµ = iUDµU †. We use Fπ = 92.2MeV for

the physical pion decay constant. By NDA the LECs of the non-derivative pion operators

are expected to be gππ2,3,4,5 = O(Λ2
χ), while gππ1 = O(1). These expectations are very well

respected by the extractions of ref. [42–44] based on chiral symmetry and lattice QCD

results. In table 1 we give the value of the LECs at µ = 2GeV in the MS scheme,

obtained in ref. [44]. The physical amplitudes are scale and scheme independent provided

one uses Wilson coefficients C(9)
i evaluated at the same scale and in the same scheme as

used for the gππi .

The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAg

πN
1 C(9)

1L F 2
0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5
+ (L↔ R)

=
√
2gAg

πN
1 C(9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L↔ R) + . . . , (3.2)

2The ππ couplings defined here are related to those of refs. [25, 31, 43] by gππ
1 = g27×1, g

ππ
2 = g6×6̄,

gππ
3 = gmix

6×6̄, g
ππ
4 = g8×8, g

ππ
5 = gmix

8×8, while for the πN and NN couplings we have gπN
1 = gπN

27×1 and gNN
1 =

gNN
27×1. The notation of refs. [25, 31, 43] emphasizes the transformation properties under SU(3)L × SU(3)R.
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Figure 2. The different contributions of dim-9 LNV operators to the 0νββ potential, first discussed
in refs. [21, 54–56]. Double, dashed, and single lines denote, respectively, nucleon, pion, and lepton
fields. The black square denotes ∆L = 2 ππ, πN , and NN operators, discussed in sections 3.1
and 3.2. The remaining vertices are SM interactions between nucleons and pions.

3.1 Scalar dim-9 operators

The scalar operators O1–O5 generate the ππee, πNNee, and NN NN ee LNV couplings

shown in figure 2. The operators O2,3,4,5 induce non-derivative pionic operators, while the

first pionic operators induced by O1 contain two derivatives and are therefore relatively

suppressed. The mesonic chiral Lagrangian2 for O1,2,3,4,5 is

Lscalar
π =

F 4
0

4

[
5

3
gππ1 C(9)

1L Lµ
21L21µ +

(
gππ2 C(9)

2L + gππ3 C(9)
3L

)
Tr
(
Uτ+Uτ+

)

+
(
gππ4 C(9)

4L + gππ5 C(9)
5L

)
Tr
(
Uτ+U †τ+

)] ēLCēTL
v5

+ (L↔ R)

=
F 2
0

2

[
5

3
gππ1 C(9)

1L ∂µπ
−∂µπ− +

(
gππ4 C(9)

4L + gππ5 C(9)
5L − gππ2 C(9)

2L − gππ3 C(9)
3L

)
π−π−

]

× ēLCēTL
v5

+ (L↔ R) + . . . , (3.1)

where U = u2 = exp (iπ · τ/F0) is the matrix of pseudo-Goldstone boson fields, F0 is the

pion decay constant in the chiral limit, and Lµ = iUDµU †. We use Fπ = 92.2MeV for

the physical pion decay constant. By NDA the LECs of the non-derivative pion operators

are expected to be gππ2,3,4,5 = O(Λ2
χ), while gππ1 = O(1). These expectations are very well

respected by the extractions of ref. [42–44] based on chiral symmetry and lattice QCD

results. In table 1 we give the value of the LECs at µ = 2GeV in the MS scheme,

obtained in ref. [44]. The physical amplitudes are scale and scheme independent provided

one uses Wilson coefficients C(9)
i evaluated at the same scale and in the same scheme as

used for the gππi .

The πN terms are only relevant for the O1 operator and can be written as

Lscalar
πN = gAg

πN
1 C(9)

1L F 2
0

[
N̄Sµu†τ+uN Tr

(
uµu

†τ+u
)] ēLCēTL

v5
+ (L↔ R)

=
√
2gAg

πN
1 C(9)

1L F0
[
p̄ S · (∂π−)n

] ēLCēTL
v5

+ (L↔ R) + . . . , (3.2)

2The ππ couplings defined here are related to those of refs. [25, 31, 43] by gππ
1 = g27×1, g

ππ
2 = g6×6̄,

gππ
3 = gmix

6×6̄, g
ππ
4 = g8×8, g

ππ
5 = gmix

8×8, while for the πN and NN couplings we have gπN
1 = gπN

27×1 and gNN
1 =

gNN
27×1. The notation of refs. [25, 31, 43] emphasizes the transformation properties under SU(3)L × SU(3)R.
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where uµ = u†Lµu = i
[
u(∂µ − irµ)u† − u†(∂µ − ilµ)u

]
, gA ≃ 1.27, N = (p, n)T , and Sµ

and vµ are the nucleon spin and velocity. In the nucleon restframe we have Sα = (0, σ/2)

and vµ = (1, 0). The LEC gπN1 is unknown, but expected to be O(1) by NDA.

In a power counting based on NDA, LNV four-nucleon interactions are relevant only

for O1, in which case they would compete with the ππ and πN interactions gππ1 and

gπN1 . However, the LNV potential induced by the non-derivative ππ operators in eq. (3.1)

has the same short-distance behavior as the neutrino potential mediated by the neutrino

Majorana mass, V (q) ∼ 1/q2 at large |q|. Ref. [27] showed that for these potentials the

nn→ ppee scattering amplitude has a logarithmic UV divergence, which can be absorbed

by promoting the NN operators stemming from O2,3,4,5 to leading order. The relevant NN

interactions are

Lscalar
NN = gNN

1 C(9)
1L (N̄u†τ+uN)(N̄u†τ+uN)

ēLCēTL
v5

+
(
gNN
2 C(9)

2L + gNN
3 C(9)

3L

)
(N̄u†τ+u†N)(N̄u†τ+u†N)

ēLCēTL
v5

+
(
gNN
4 C(9)

4L + gNN
5 C(9)

5L

)
(N̄u†τ+uN)(N̄uτ+u†N)

ēLCēTL
v5

+ (L↔ R)

=
(
gNN
1 C(9)

1L + gNN
2 C(9)

2L + gNN
3 C(9)

3L + gNN
4 C(9)

4L + gNN
5 C(9)

5L

)
(p̄n) (p̄n)

ēLCēTL
v5

+(L↔ R) + . . . . (3.3)

The couplings gNN
i = O(1) in the Weinberg power counting, but need to be promoted to

O((4π)2) in the case of O2,3,4,5. The renormalization of the scattering amplitude does not

require such enhancement for gNN
1 .

The ππ, πN , and NN Lagrangians for the O′
1,2,3 operators, which are related by parity

to O1,2,3, can be obtained by replacing C(9)
1L, 2L, 3L → C(9) ′

1L, 2L, 3L, C
(9)
1R, 2R, 3R → C(9) ′

1R, 2R, 3R,

Sα → −(−1)αSα, uα → −(−1)αuα, u→ u†, and U → U † in eqs. (3.1)–(3.3).3 This leads to

ππ, πN , and NN Lagrangians of the same form (with C(L,R)
1,2,3 → C ′ (L,R)

1,2,3 ) after expanding

the meson matrices u (and U) to two, one, and zero pions, respectively.

From eq. (3.3) we see that all scalar operators in eq. (2.8) induce a LNV four-nucleon

operator that contributes to the nn→ ppee amplitude at the same order as the pion-range

contributions from the ππee operators. This happens either because the ππee interaction is

suppressed by two powers in the chiral counting (as it is for O1 and O′
1), or because of non-

perturbative renormalization which enhances the four-nucleon operator to leading order

(O2,3,4,5 and O′
2,3). In other words, for all scalar operators the ππee and NN interactions

appear at the same order. For O1 and O′
1 there appear additional contributions from the

πN interaction. More details on the renormalization of the nn→ ppee scattering amplitude

and the non-perturbative RGE of gNN
i are given in appendix B.

3.2 Vector operators

The vector operators induce mesonic interactions involving a derivative on the pion fields,

which, up to a total derivative, give rise to contributions proportional to me [21, 24].

3We use the following standard notation: (−1)µ = 1 for µ = 0 and (−1)µ = −1 for µ = 1, 2, 3 [57].
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• The master formula for decay width (0+—>0+):
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d=3 C(6)
SL, SR C(6)

T C(6)
VL C(6)

VR C(7)
VL,VR C(9) (′)

1R C(9)(′)
1L C(9)(′)

2R−5R C(9)(′)
2L−5L C(9)

vector

meAν mββ Λχ Λχϵ2χ − − Λ2
χ

v ϵ2χ − Λ2
χ

v ϵ2χ − Λ2
χ

v −

meAR − − − − − − Λ2
χ

v ϵ2χ − Λ2
χ

v − −

meAM − − − Λχϵ2χ − − − − − − Λ2
χ

v ϵ
2
χ

meAE − − − Λχϵ3χ Λχϵ3χ − − − − − −

meAme − − − Λχϵ3χ Λχϵ3χ − − − − − −

Table 3. Power-counting estimates of the contribution of low-energy dim-3, -6, -7, and -9 operators
to the amplitudes in eq. (4.3), in terms of mββ , the Higgs vev v, and ϵχ ≡ mπ/Λχ, where Λχ ∼
mN ∼ 1GeV. We take the electron mass and energies to scale as E1 ∼ E2 ∼ me ∼ Λχ ϵ3χ. This table

assumes the NMEs to follow the chiral EFT power counting. C(9)
vector indicates any of the vector

operators in eq. (2.7). Finally, note that to estimate the overall scaling of the amplitudes one needs
to take into account that, up to insertions of dimensionless couplings, the Wilson coefficients scale
as follows: mββ = O(v2/Λ), C(6,7)

i = O(v3/Λ3), C(9)
1L, 4L, 5L = O(v3/Λ3) or O(v5/Λ5) (depending on

the underlying model), and C(9)
i = O(v5/Λ5) for the remaining dim-9 operators.

4.2 Master formula for the 0νββ decay rate

Using the amplitude in eq. (4.1), the expression for the inverse half-life becomes [62, 63],

(
T 0ν
1/2

)−1
=

1

8 ln 2

1

(2π)5

∫
d3k1
2E1

d3k2
2E2

|A|2F (Z,E1)F (Z,E2)δ(E1 +E2 +Ef −Mi) . (4.12)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the elec-

trons and final daughter nucleus in the rest frame of the decaying nucleus. The functions

F (Z,Ei) are defined in appendix A.1 and take into account the fact that the emitted elec-

trons feel the Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in eq. (4.3) to separate the different leptonic

structures, we obtain the final expression

(
T 0ν
1/2

)−1
= g4A

{
G01

(
|Aν |2 + |AR|2

)
− 2(G01 −G04)ReA∗

νAR + 4G02 |AE |2

+2G04
[
|Ame |2 +Re

(
A∗

me
(Aν +AR)

)]

−2G03Re [(Aν +AR)A∗
E + 2AmeA∗

E ]

+G09 |AM |2 +G06Re [(Aν −AR)A∗
M ]

}
. (4.13)

This ‘Master-formula’ describes the 0νββ decay rate up to dim-9 operators in the SM-EFT.

It includes all contributions from the low-energy ∆L = 2 operators in eq. (2.1) and takes

into account all interference terms. It should provide a useful tool to constrain any model

of high-scale LNV, using the most up-to-date hadronic and nuclear input. A differential

version of eq. (4.13) is given in appendix A.1. The various components in eq. (4.13) can

be obtained as follows:

• G0i are phase space factors defined in appendix A.1 and their numerical values are

given in table 4.
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Figure 2. Schematic representation of the diagrams contributing to the neutrino potentials. Double
and single lines denote, respectively, nucleon and lepton fields. The black square denotes an insertion
of the neutrino Majorana mass, while the gray squares denote the ∆L = 2 interactions between
nucleons, pion, and leptons induced by the dimension-seven operators discussed in section 4.1. The
gray circle denotes SM interactions between nucleons, pion, and leptons.

the ∆L = 2 charged current interactions in eqs. (3.2) and (3.3). These contributions are

obtained by combining the one-body currents of the previous section. Finally, operators
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where E1,2 (k1,2) are the energies (momenta) of the electrons. Here we extracted an overall

factor from the various sub-amplitudes Ai. In particular, a factor of me/RA is extracted,

where me is the electron mass and RA = 1.2A1/3 fm in terms of A, the number of nucleons

of the daughter nucleus. This normalization was chosen in order to align the definition of

the various nuclear matrix elements with those appearing in the literature, but stress that

in the final decay rate all the factors of me/RA will drop out.

The subamplitudes Ai depend on the Wilson coefficients of the ∆L = 2 operators,

on hadronic matrix elements, and nuclear matrix elements. The required LECs encod-

ing hadronic matrix elements are listed in table 1. It turns out that all nuclear input

that appears in eq. (4.3) can be expressed in terms of nine long-range NMEs (MF , MAA
GT ,

MAP
GT , MPP

GT , MMM
GT , MAA

T , MAP
T , MPP

T , MMM
T ) and six short-range matrix elements

(MF, sd, MAA
GT, sd, M

AP
GT, sd, M

PP
GT, sd, M

AP
T, sd, M

PP
T, sd). For the exact definitions we refer to ap-

pendix A.2. All NMEs, apart from one (MAA
T ), can be extracted from existing calculations

of light- and heavy Majorana-neutrino exchange contributions. Furthermore, at LO in

χPT the fifteen NMEs are related by five identities that can be used to further reduce the

number of required many-body calculations or as a consistency check of the results [25].

In table 2 we summarize several recent calculations of the NMEs, obtained by different

groups applying different many-body methods. The NMEs often appear in certain linear

combinations Mi that are defined below.

It is useful to further decompose the sub-amplitudes in terms of contributions from

LNV operators of different dimension
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M . (4.4)

The subamplitude Aν multiplies the leptonic structure that arises from light Majorana-

neutrino exchange, from several long-range dim-6 and dim-7 contributions, and from short-

range dim-9 contributions. We have therefore decomposed it in a component proportional

to the electron-neutrino Majorana mass mββ , and the additional terms M(6)
ν and M(9)

ν ,

generated, respectively, by dim-6 and -7, and by dim-9 LNV operators. The short-distance
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component M(9)
ν arises from V9 and always involves an additional power of 1/v with respect

to the contribution from light Majorana-neutrino exchange. To compensate for this factor

and for the absence of the neutrino mass, we have factored out two powers ofmN in eq. (4.4).

In terms of the standard building blocks defined in appendix A.2, the combination of NMEs

Mi are defined as

M(3)
ν = −V 2

ud

(
− 1

g2A
MF +MGT +MT + 2

m2
π g

NN
ν

g2A
MF, sd

)
, (4.5)

M(6)
ν = Vud

(
B

mN
(C(6)

SL − C(6)
SR) +

m2
π

mNv

(
C(7)
VL − C(7)

VR

))
MPS + VudC

(6)
T MT6 , (4.6)

M(9)
ν = − 1

2m2
N

C(9)
ππ L

(
1

2
MAP

GT,sd +MPP
GT,sd +

1

2
MAP

T,sd +MPP
T,sd

)

+
m2

π

2m2
N

C(9)
πN L

(
MAP

GT,sd +MAP
T,sd

)
− 2

g2A

m2
π

m2
N

C(9)
NN LMF, sd , (4.7)

where gNN
ν ∼ O(F−2

π ) is a new leading-order low-energy constant [27], defined in eq. (C.1),

and B ≡ −⟨q̄q⟩/F 2
π ≃ 2.7GeV at µ = 2GeV in the MS scheme. Only C(9)

1L and C(9)
4L, 5L in

M(9)
ν receive matching contributions from dim-7 operators [25], while the remaining terms

are at least dim-9 [24]. In the above expressions we have defined

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP

GT +MPP
GT +

1

2
MAP

T +MPP
T ,

MT6 = 2
g′T − gNN

T

g2A

m2
π

m2
N

MF, sd −
8gT
gM

(
MMM

GT +MMM
T

)
+ gπNT

m2
π

4m2
N

(
MAP

GT,sd +MAP
T,sd

)

+gππT
m2

π

4m2
N

(
MPP

GT, sd +MPP
T, sd

)
, (4.8)

in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-

pendix C.

The subamplitude AR only receives contributions from the dim-9 scalar operators

involving right-handed electrons. It is only induced by dim-9 operators and is proportional

to

M(9)
R = M(9)

ν

∣∣
L→R

. (4.9)

The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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in terms of matrix elements defined in appendix A.2. gππT , gπNT and gNN
T are the LECs

of ππee, πNN ee and NN NN ee short-range operators induced by C(6)
T , defined in ap-
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The subamplitudes AE and Ame are not affected by dim-9 operators and their expres-

sions are therefore the same as in ref. [25], apart from additional short-range contributions
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• MF, MGT and MT are the long range Fermi, Gamow-Teller 
and tensor parts we are familiar with 

• Where  

• Short range NMEs are similar 

• All these M’s can then be expressed in 15 NMEs
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Decay rate

• A comparison with LR symmetric model in traditional 
treatment where left- and right-handed neutrino are 
treated equally (short range mechanism neglected) 

• Where
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REEXAMINING THE LIGHT NEUTRINO EXCHANGE . . . PHYSICAL REVIEW C 92, 055502 (2015)

We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
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{
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⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by
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(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣
,

⟨η⟩ = η

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣
,

ψ1 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞

⎠
∗⎤

⎦,

ψ2 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej

⎞

⎠
∗⎤

⎦.

(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

⟨λ⟩ cos ψ1

+Cmη

|mββ |
me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣
,

⟨η⟩ = η

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣
,

ψ1 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞

⎠
∗⎤

⎦,

ψ2 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej

⎞

⎠
∗⎤

⎦.

(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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with

|ξ | =
∣∣c23c

2
12c13s

2
13 − c3

12c
3
13 − c13c23c

2
12s

2
13

− c12c13
(
c2

13s
2
12 + s2

13

)∣∣ ≃ 0.82 (36)

Here, cij ≡ cos(θij ) and sij ≡ sin(θij ). ξ was evaluated by
assuming the best fit values for mixing angles θ12, θ13, and
θ23 entering the PMNS matrix [19]. The experimental upper
bound on the mixing angle of left and right vector bosons is
ζ < 0.013, and if the CP violating phase in the mixing matrix
for right-handed quarks is small one gets ζ < 0.0025. The
flavor and CP violating processes of kaons and B mesons
make it possible to deduce the lower bound on the mass of
the heavy vector boson MW2 > 2.9 TeV [11]. In the LRSM
there could be additional contributions to 0νββ decay due
to the double charged Higgs triplet. However, as pointed in
Ref. [11], in the considered case of type-I seesaw dominance,
these contributions can be neglected.

The coefficients CI (I = mm, mλ, mη, λλ, ηη, and λη)
are expressed as combinations of nuclear matrix elements and
phase-space factors:

Cmm = (1 − χF + χT )2G01,

Cmλ = −(1 − χF + χT )[χ2−G03 − χ1+G04],

Cmη = (1 − χF + χT )[χ2+G03 − χ1−G04

−χP G05 + χRG06],

Cλλ = χ2
2−G02 + 1

9χ2
1+G011 − 2

9χ1+χ2−G010, (37)

Cηη = χ2
2+G02 + 1

9χ2
1−G011 − 2

9χ1−χ2+G010 + χ2
P G08

−χP χRG07 + χ2
RG09,

Cλη = −2
[
χ2−χ2+G02 − 1

9 (χ1+χ2+ + χ2−χ1−)G010

+ 1
9χ1+χ1−G011

]
.

The explicit form of nuclear matrix elements MGT and their
ratios χI are presented in Sec. III B. The integrated kinematical
factors are defined as

G0k =
G4

βm2
e

64π5 ln 2R2

∫
δ(ε1 + ε2 + Mf − Mi)

× [h0k(ε1,ε2,R) cos θ + g0k(ε1,ε2,R)]

×p1p2ε1ε2dε1dε2d(cos θ )

=
∫ 1

−1

(
Gθ

0k

ln 2
cos θ + G0k

2

)
d(cos θ ), (38)

where k = 1,2, . . . ,11. p1 and p2 are momenta of electrons
and θ is the angle between emitted electrons. The functions
h0k(ε1,ε2,R) and g0k(ε1,ε2,R) are defined in Sec. III A. These
definitions are independent of the weak axial-vector coupling
constant gA. The quantities G0k are given in units of inverse
years. We note that if the standard wave functions of electron
(w.f. A) are assumed, G010 = G03 and G011 = G04. If in
addition contributions from the induced pseudoscalar term
of nucleon current are neglected, the decay rate in Eq. (33)
reduces to that given in Ref. [6]. Quantity Gθ

0k is relevant for
the angular correlation between the two electrons. We note
that Gθ

03 = Gθ
06 = 0.

A. Components due to electron wave functions
in the phase-space factors

The s1/2 and p1/2 electron wave functions at the nuclear
surface associated with emission of both electrons enter into
the phase-space factors through the functions presented below.

For phase-space factors Gθ
0k related with the angular

distribution of emitted electrons the quantities h0k(ϵ1,ϵ2,R)
are

h01 = −4Css(ε1)Css(ε2),

h02 = 2ε2
12

m2
e

Css(ε1)Css(ε2),

h03 = 0,

h04 = − 2
3meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h05 = 4
meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h06 = 0, (39)

h07 = −16
(meR)2

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) − Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h08 = −8
(meR)2

[
Cf

sp(ε1)Cg
sp(ε2) + Cf

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
,

h09 = 32
(meR)2

Css(ε1)Css(ε2),

h010 = −9
2
h̃010 − h02,

h011 = 9h̃011 + 1
9
h02 + h̃010,
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12c
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13 − c13c23c
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12s
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13

− c12c13
(
c2

13s
2
12 + s2

13

)∣∣ ≃ 0.82 (36)

Here, cij ≡ cos(θij ) and sij ≡ sin(θij ). ξ was evaluated by
assuming the best fit values for mixing angles θ12, θ13, and
θ23 entering the PMNS matrix [19]. The experimental upper
bound on the mixing angle of left and right vector bosons is
ζ < 0.013, and if the CP violating phase in the mixing matrix
for right-handed quarks is small one gets ζ < 0.0025. The
flavor and CP violating processes of kaons and B mesons
make it possible to deduce the lower bound on the mass of
the heavy vector boson MW2 > 2.9 TeV [11]. In the LRSM
there could be additional contributions to 0νββ decay due
to the double charged Higgs triplet. However, as pointed in
Ref. [11], in the considered case of type-I seesaw dominance,
these contributions can be neglected.

The coefficients CI (I = mm, mλ, mη, λλ, ηη, and λη)
are expressed as combinations of nuclear matrix elements and
phase-space factors:

Cmm = (1 − χF + χT )2G01,

Cmλ = −(1 − χF + χT )[χ2−G03 − χ1+G04],

Cmη = (1 − χF + χT )[χ2+G03 − χ1−G04

−χP G05 + χRG06],

Cλλ = χ2
2−G02 + 1

9χ2
1+G011 − 2

9χ1+χ2−G010, (37)

Cηη = χ2
2+G02 + 1

9χ2
1−G011 − 2

9χ1−χ2+G010 + χ2
P G08

−χP χRG07 + χ2
RG09,

Cλη = −2
[
χ2−χ2+G02 − 1

9 (χ1+χ2+ + χ2−χ1−)G010

+ 1
9χ1+χ1−G011

]
.

The explicit form of nuclear matrix elements MGT and their
ratios χI are presented in Sec. III B. The integrated kinematical
factors are defined as

G0k =
G4

βm2
e

64π5 ln 2R2

∫
δ(ε1 + ε2 + Mf − Mi)

× [h0k(ε1,ε2,R) cos θ + g0k(ε1,ε2,R)]

×p1p2ε1ε2dε1dε2d(cos θ )

=
∫ 1

−1

(
Gθ

0k

ln 2
cos θ + G0k

2

)
d(cos θ ), (38)

where k = 1,2, . . . ,11. p1 and p2 are momenta of electrons
and θ is the angle between emitted electrons. The functions
h0k(ε1,ε2,R) and g0k(ε1,ε2,R) are defined in Sec. III A. These
definitions are independent of the weak axial-vector coupling
constant gA. The quantities G0k are given in units of inverse
years. We note that if the standard wave functions of electron
(w.f. A) are assumed, G010 = G03 and G011 = G04. If in
addition contributions from the induced pseudoscalar term
of nucleon current are neglected, the decay rate in Eq. (33)
reduces to that given in Ref. [6]. Quantity Gθ

0k is relevant for
the angular correlation between the two electrons. We note
that Gθ

03 = Gθ
06 = 0.

A. Components due to electron wave functions
in the phase-space factors

The s1/2 and p1/2 electron wave functions at the nuclear
surface associated with emission of both electrons enter into
the phase-space factors through the functions presented below.

For phase-space factors Gθ
0k related with the angular

distribution of emitted electrons the quantities h0k(ϵ1,ϵ2,R)
are

h01 = −4Css(ε1)Css(ε2),

h02 = 2ε2
12

m2
e

Css(ε1)Css(ε2),

h03 = 0,

h04 = − 2
3meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h05 = 4
meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h06 = 0, (39)

h07 = −16
(meR)2

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) − Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h08 = −8
(meR)2

[
Cf

sp(ε1)Cg
sp(ε2) + Cf

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
,

h09 = 32
(meR)2

Css(ε1)Css(ε2),

h010 = −9
2
h̃010 − h02,

h011 = 9h̃011 + 1
9
h02 + h̃010,
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with

h̃010 = 2ε12

3m2
eR

[
Cf

sp(ε1)Css(ε2) − Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h̃011 = −2
(3meR)2

[
Cf

sp(ε1)Cf
sp(ε2) + Cg

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
.

(40)

In addition, the components g0k(ϵ1,ϵ2,R) of the phase-space factors (38) are

g01 = g11 = C+
ss(ε1)C+

ss(ε2),

g02 = ε2
12

2m2
e

[C+
ss(ε1)C+

ss(ε2) − C−
ss(ε1)C−

ss(ε2)],

g03 = ε12

me

[C+
ss(ε1)C−

ss(ε2) − C+
ss(ε2)C−

ss(ε1)],

g04 = 1
3meR

[−C−
ss(ε1)C−

sp(ε2) − C−
ss(ε2)C−

sp(ε1) + C+
ss(ε1)C+

sp(ε2) + C+
ss(ε2)C+

sp(ε1)] − g03/9,

g05 = −2
meR

[C−
ss(ε1)C−

sp(ε2) + C−
ss(ε2)C−

sp(ε1) + C+
ss(ε1)C+

sp(ε2) + C+
ss(ε2)C+

sp(ε1)],

g06 = 4
meR

[C+
ss(ε1)C−

ss(ε2) + C+
ss(ε2)C−

ss(ε1)], (41)

g07 = −8
(meR)2

[C+
ss(ε1)C−

sp(ε2) + C+
ss(ε2)C−

sp(ε1) + C−
ss(ε1)C+

sp(ε2) + C−
ss(ε2)C+

sp(ε1)],

g08 = 2
(meR)2

[−C−
pp(ε1)C−

ss(ε2) − C−
pp(ε2)C−

ss(ε1) + C+
pp(ε1)C+

ss(ε2) + C+
pp(ε2)C+

ss(ε1) + 2C−
sp(ε1)C−

sp(ε2) + 2C+
sp(ε1)C+

sp(ε2)],

g09 = 8
(meR)2

[C+
ss(ε1)C+

ss(ε2) + C−
ss(ε1)C−

ss(ε2)],

g010 = −9
2
g̃010 − g02,

g011 = 9g̃011 + 1
9
g02 + g̃010,

with

g̃010 = ε12

3m2
eR

[−C+
ss(ε1)C−

sp(ε2) + C+
ss(ε2)C−

sp(ε1) + C−
ss(ε1)C+

sp(ε2) − C−
ss(ε2)C+

sp(ε1)],

g̃011 = 1
18m2

eR
2

[C−
pp(ε1)C−

ss(ε2) + C−
pp(ε2)C−

ss(ε1) + C+
pp(ε1)C+

ss(ε2) + C+
pp(ε2)C+

ss(ε1) − 2C−
sp(ε1)C−

sp(ε2) + 2C+
sp(ε1)C+

sp(ε2)].

(42)

Here, C are combinations of radial components of s1/2 and p1/2 wave functions,

Css(ε) = g−1(ε)f+1(ε), Cpp(ε1) = g1(ε)f−1(ε), Cf
sp(ε) = f−1(ε)f+1(ε), Cg

sp(ε) = g−1(ε)g+1(ε),
(43)

C±
ss(ε) = g2

−1(ε) ± f 2
+1(ε), C±

pp(ε) = g2
+1(ε) ± f 2

−1(ε), C±
sp(ε) = g−1(ε)f−1(ε) ± g+1(ε)f+1(ε).

B. Nuclear matrix elements entering the decay rate

The expression for the 0νββ-decay half-life in Eq. (33) contains matrix element ratios χI and their linear combinations χ1±
and χ2±. The quantities χI are defined as

χI = MI/MGT , (44)

where I = F , T , ωF , ωGT , ωT , qF , qGT , qT , R, and P and MGT is the dominant Gamow-Teller matrix element associated
with the mechanism due to the left-handed currents. The combinations χ1± and χ2± are given by

χ1± = χqGT − 6χqT ± 3χqF , χ2± = χGT ω + χT ω ± χFω − 1
9χ1∓. (45)
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The nuclear matrix elements MI depend on the exchange potentials hI (r) through

MF,GT,T =
∑

rs

⟨Af ∥hF,GT,T (r−)OF,GT,T ∥Ai⟩,

MωF,ωGT,ωT =
∑

rs

⟨Af ∥hωF,ωGT,ωT (r−)OF,GT,T ∥Ai⟩,

MP =
∑

rs

i⟨Af ∥hP (r−)τ+
r τ+

s

(r− × r+)
R2

· σ⃗r∥Ai⟩,

MqF,qGT,qT =
∑

rs

⟨Af ∥hqF,qGT,qT (r−)OF,GT,T ∥Ai⟩,

MR =
∑

rs

⟨Af ∥[hRG(r−)OGT + hRT (r−)OT ]∥Ai⟩,

where OF,GT,T are the familiar operators 1,σ⃗1 · σ⃗2 and 3(σ⃗1 · r̂12)(σ⃗2 · r̂12).
The two-nucleon exchange potentials hI (r) with F , GT , T , qF , qGT , qT , RG, RT , and P can be written as

hI (r) = 2R

π

∫
fI (q,r)

q dq

q + Ēn − (Ei + Ef )/2
, (46)

where

fGT = j0(q,r)
g2

A

(
g2

A(q2) − gA(q2)gP (q2)
mN

q2

3
+ g2

P (q2)
4m2

N

q4

3

)
,

fF = g2
V (q2)
g2

A

j0(qr),

fT = j2(q,r)
g2

A

(
gA(q2)gP (q2)

mN

q2

3
− g2

P (q2)
4m2

N

q4

3

)
,

fqF = r
g2

V (q2)
g2

A

j1(qr)q,

fqGT =
(

g2
A(q2)
g2

A

q + 3
g2

P (q2)
g2

A

q5

4m2
N

+ gA(q2)gP (q2)
g2

A

q3

mN

)
rj1(qr),

fqT = r

3

[(
g2

A(q2)
g2

A

q − gP (q2)gA(q2)
2g2

A

q3

mN

)
j1(qr) − 9

g2
P (q2)
2g2

A

q5

20m2
N

[2j1(qr)/3 − j3(qr)]
]
,

fRG = −R

3mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j0(qr)q2,

fRT = −R

6mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A
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where
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Here, r+ = (rr + rs)/2, r− = (rr − rs). rr,s is the coordinate
of the decaying nucleon and ji(qr) (i = 1,2,3) are the
spherical Bessel functions. It is assumed that pr + p′

r ≃ 0,
Er − E′

r ≃ 0, and pr − p′
r ≃ q, where q is the momentum

exchange. The form factors gV (q2), gA(q2), gM (q2), and
gV (q2) are defined in Ref. [20] and gA = 1.269.

If right-handed currents are switched off, all terms in
Eq. (33) except that proportional to C1 vanish. The connection
with the standard 0νββ-decay formula (33) is then G01 ≡ G0ν

and MGT (1 − χF + χT ) ≡ M0ν .
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

⟨λ⟩ cos ψ1

+Cmη

|mββ |
me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣
,

⟨η⟩ = η

∣∣∣∣∣∣

3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣
,

ψ1 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞

⎠
∗⎤

⎦,

ψ2 = arg

⎡

⎣

⎛

⎝
3∑

j=1

mjU
2
ej

⎞

⎠

⎛

⎝
3∑

j=1

UejT
∗
ej

⎞

⎠
∗⎤

⎦.

(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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⎠
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⎡
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⎠
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(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + '− ε12
+ ql

q + '+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + '
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + '− ε12
− 1

q + '+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1
(q + ')2

eiq·x, (31)

where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = )0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me
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+ Cmλ
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me

⟨η⟩ cos ψ2 + Cλλ⟨λ⟩2 + Cηη⟨η⟩2

+Cλη⟨λ⟩⟨η⟩ cos (ψ1 − ψ2)
}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

⟨λ⟩ = λ
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⎠
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⎠
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⎡
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⎠
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⎠
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(34)

With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get

⟨λ⟩ ≈
(
MW1/MW2

)2 mD

mLNV
|ξ |,

⟨η⟩ ≈ − tan ζ
mD

mLNV
|ξ |,
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qµ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n⟩⟨n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
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)
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where ' = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | ≪ |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as
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The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
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With help of (23) and by assuming (27), U0 ≃ V0 and
(g′

V /gV ) ≃ 1 we get
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|ξ |,
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J
H
E
P
1
2
(
2
0
1
8
)
0
9
7

d=3 C(6)
SL, SR C(6)

T C(6)
VL C(6)

VR C(7)
VL,VR C(9) (′)

1R C(9)(′)
1L C(9)(′)

2R−5R C(9)(′)
2L−5L C(9)

vector

meAν mββ Λχ Λχϵ2χ − − Λ2
χ

v ϵ2χ − Λ2
χ

v ϵ2χ − Λ2
χ

v −

meAR − − − − − − Λ2
χ

v ϵ2χ − Λ2
χ

v − −

meAM − − − Λχϵ2χ − − − − − − Λ2
χ

v ϵ
2
χ

meAE − − − Λχϵ3χ Λχϵ3χ − − − − − −

meAme − − − Λχϵ3χ Λχϵ3χ − − − − − −

Table 3. Power-counting estimates of the contribution of low-energy dim-3, -6, -7, and -9 operators
to the amplitudes in eq. (4.3), in terms of mββ , the Higgs vev v, and ϵχ ≡ mπ/Λχ, where Λχ ∼
mN ∼ 1GeV. We take the electron mass and energies to scale as E1 ∼ E2 ∼ me ∼ Λχ ϵ3χ. This table

assumes the NMEs to follow the chiral EFT power counting. C(9)
vector indicates any of the vector

operators in eq. (2.7). Finally, note that to estimate the overall scaling of the amplitudes one needs
to take into account that, up to insertions of dimensionless couplings, the Wilson coefficients scale
as follows: mββ = O(v2/Λ), C(6,7)

i = O(v3/Λ3), C(9)
1L, 4L, 5L = O(v3/Λ3) or O(v5/Λ5) (depending on

the underlying model), and C(9)
i = O(v5/Λ5) for the remaining dim-9 operators.

4.2 Master formula for the 0νββ decay rate

Using the amplitude in eq. (4.1), the expression for the inverse half-life becomes [62, 63],

(
T 0ν
1/2

)−1
=

1

8 ln 2

1

(2π)5

∫
d3k1
2E1

d3k2
2E2

|A|2F (Z,E1)F (Z,E2)δ(E1 +E2 +Ef −Mi) . (4.12)

Here Mi is the mass of the decaying nucleus, while E1,2 and Ef are the energies of the elec-

trons and final daughter nucleus in the rest frame of the decaying nucleus. The functions

F (Z,Ei) are defined in appendix A.1 and take into account the fact that the emitted elec-

trons feel the Coulomb potential of the daughter nucleus and are therefore not plane waves.

Using the decomposition of the amplitude in eq. (4.3) to separate the different leptonic

structures, we obtain the final expression

(
T 0ν
1/2

)−1
= g4A

{
G01

(
|Aν |2 + |AR|2

)
− 2(G01 −G04)ReA∗

νAR + 4G02 |AE |2

+2G04
[
|Ame |2 +Re

(
A∗

me
(Aν +AR)

)]

−2G03Re [(Aν +AR)A∗
E + 2AmeA∗

E ]

+G09 |AM |2 +G06Re [(Aν −AR)A∗
M ]

}
. (4.13)

This ‘Master-formula’ describes the 0νββ decay rate up to dim-9 operators in the SM-EFT.

It includes all contributions from the low-energy ∆L = 2 operators in eq. (2.1) and takes

into account all interference terms. It should provide a useful tool to constrain any model

of high-scale LNV, using the most up-to-date hadronic and nuclear input. A differential

version of eq. (4.13) is given in appendix A.1. The various components in eq. (4.13) can

be obtained as follows:

• G0i are phase space factors defined in appendix A.1 and their numerical values are

given in table 4.
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• NME correspondence in different references
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J
H
E
P
1
2
(
2
0
1
7
)
0
8
2

NMEs Ref. [76, 84, 85] Ref. [83] Ref. [32]

MF MF MF MF,Fω,F q

MAA
GT MAA

GT MAA
GT MGTω,GTq

MAP
GT MAP

GT MAP
GT 4me

B MGTπν +
1
3MGT2π

MPP
GT MPP

GT MPP
GT −1

6MGT2π

MMM
GT r2MMMM

GT MMM
GT rM

gM
2gAgV RAmN

MR =
g2M

6g2ARAmN
MGT ′

MAA
T ✗ ✗ ✗

MAP
T MAP

T MAP
T 4me

B MTπν +
1
3MT2π

MPP
T MPP

T MPP
T −1

6MT2π

MMM
T r2MMMM

T MMM
T − g2M

12g2ARAmN
M ′

T

MF,sd
memN
m2

π
MF,sd

memN
m2

π
MF,sd

memN
m2

π
MFN = mN

RAm2
π
M ′

F

MAA
GT,sd

memN
m2

π
MAA

GT,sd
memN
m2

π
MAA

GT,sd
memN
m2

π
MGTN = mN

RAm2
π
M ′

GT

MAP
GT,sd

memN
m2

π
MAP

GT,sd
memN
m2

π
MAP

GT,sd
2
3MGT1π

MPP
GT,sd

memN
m2

π
MPP

GT,sd
memN
m2

π
MPP

GT,sd
1
6(MGT2π − 2MGT1π)

MAP
T,sd

memN
m2

π
MAP

T,sd
memN
m2

π
MAP

T,sd
2
3MT1π

MPP
T,sd

memN
m2

π
MPP

T,sd
memN
m2

π
MPP

T,sd
1
6(MT2π − 2MT1π)

Table 9. Comparison of the different notations used in refs. [32, 76, 77]. For each row the expres-

sions in the different columns equal one another in the limit that Ē → 0. Furthermore, B = m2
π

mu+md
,

where ref. [32] uses mu +md = 11.6MeV. gM has different definitions in various papers. Here we
use gM = 1 + κ1 and introduce the ratio rM = (1 + κ1)/κ1.

D Conversion of nuclear matrix elements

In this appendix, we provide the conversion between the NMEs defined in section 6.1 and

those of the original papers [32, 76, 77, 83–85].

For the matrix elements involving the exchange of a light neutrino, our definitions

match those in refs. [76, 83–85]. The only exceptions are MMM
GT,T , for which refs. [76, 84, 85]

used gM (0) = κ1 = 3.7 rather than gM (0) = 1 + κ1. In section 6.1, we thus rescaled these

matrix elements by powers of rM = (1 + κ1)/κ1. For the Gamow-Teller and tensor matrix

elements, ref. [32] does not separately provide the AA, AP , PP and MM components.

However, we can reconstruct the needed NMEs from linear combinations of other matrix

elements computed in ref. [32], as detailed in table 9. The definitions of the NMEs in the

third column of table 9 are given in ref. [32].10

10The relation between MMM
GT and MR given in table 9 takes into account a factor of 1/3 that is missing

from the definition of HR in eq. (21v) of (the first arXiv version of) ref. [32]. We thank M. Horoi for

clarification on this issue.
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New Contributions

• The requirement of 
renormalizablility of χEFT 

• A contact operator need to 
be prompted to LO to cancel 
the divergence
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calculations and (ii) relating it via chiral symmetry to
electromagnetic low-energy constants (LECs) that control
isospin breaking in the two-nucleon sector. A combination
of couplings involving gNNν can be fit to nucleon-nucleon
charge-independence-breaking (CIB) observables, con-
firming the LO scaling of this coupling. Based on this,
we argue that the impact of gNNν on nuclear matrix elements
of relevance to experiments can be significant, which has
consequences for the interpretation of 0νββ experiments in
terms of the light Majorana-neutrino mass.
The need for a LO short-rangeΔL ¼ 2 interaction.—We

consider a scenario in which LNV at low energy is
dominated by the electron-neutrino Majorana mass

LΔL¼2 ¼ −
mββ

2
νTeLCνeL; ð1Þ

where C ¼ iγ2γ0 denotes the charge conjugation matrix.
The nuclear effective Hamiltonian can be written as

Heff ¼ Hstrong þ 2G2
FV

2
udmββēLCēTLVν; ð2Þ

in terms of the Fermi constant GF and the Vud element of
the Cabibbo-Kobayashi-Maskawa matrix [32,33]. The
neutrino potential Vν can be obtained from two-nucleon
irreducible diagrams mediating nn → ppee to a given
order in p=Λχ . Within Weinberg’s power counting, the
only LO contribution [26] comes from the exchange of
potential neutrinos, with q0 ≪ jqj,

Vν;0ðqÞ ¼ τð1Þþτð2Þþ
1

q2

!
1 − g2Aσ

ð1Þ · σð2Þ

þ g2Aσ
ð1Þ · q σð2Þ · q

2m2
π þ q2

ðq2 þm2
πÞ2

"
; ð3Þ

where gA ≃ 1.27 is the nucleon axial coupling,mπ is the pion
mass,andq is themomentumtransfer.N2LOtermsarise from
corrections to the single nucleon weak currents, irreducible
one-loop diagrams, and contact interactions mediating
ππ → ee, n → pπþee, and nn → ppee. In particular, the
short-range potential includes a two-nucleon term [26]

Vν;CT ¼ −2gNNν τð1Þþτð2Þþ; ð4Þ

where the LEC gNNν isO(ð4πFπÞ−2) inWeinberg’s counting
andFπ ¼ 92.2 MeV is the pion decay constant. However, it
is known that Weinberg’s power counting leads to incon-
sistent results in nucleon-nucleon scattering [34–37] and
nuclearprocessesmediatedbyexternal currents [38], due toa
conflict between naive dimensional analysis and nonpertur-
bative renormalization. We therefore investigate the scaling
of gNNν by studying the amplitude Aðnn → ppeeÞ≡AΔL¼2

with strong interactions Hstrong included nonperturbatively.
We work at LO in chiral EFT and focus on the scattering

of two neutrons to two protons in the 1S0 wave, where
Hstrong has short-range and Yukawa components,

V0ðqÞ ¼ C̃þ VπðqÞ; VπðqÞ ¼ −
g2A
4F2

π

m2
π

q2 þm2
π
; ð5Þ

with C̃ ∼OðF−2
π ; m2

πF−4
π Þ [31,34,35]. We have checked

that transitions involving higher partial waves such as
3P0;1 → 3P0;1 are correctly renormalized and do not require
enhanced ΔL ¼ 2 counterterms.
The contributions to AΔL¼2 from the exchange of a light

neutrino (AðνÞ
ΔL¼2) are shown in Fig. 1. The blue ellipse

denotes the iteration of the Yukawa potential VπðqÞ. The
diagrams in the second and third rows include an infinite
number of bubbles, dressed with iterations of Vπ . Without
loss of generality for our arguments, we use the kinematics
nðpÞnð−pÞ→pðp0Þpð−p0Þeðpe1¼0Þeðpe2¼0Þ, with jpj ¼
1 MeV and, correspondingly, jp0j ¼ 38 MeV.
AðνÞ

ΔL¼2 can be expressed in terms of the Yukawa “in” and
“out”wave functions χ%p ðrÞ and the propagatorsG%

E ðr;r0Þ¼
hr0jðE−T−Vπ%i0þÞ−1jri [34,37]. Observing that the
bubble diagrams in Fig. 1 are related to Gþ

E ð0; 0Þ, while
the triangles dressed by Yukawa potentials are related to
χþp ð0Þ and χ−p0ð0Þ& ¼ χþp0ð0Þ [34], the LO amplitude reads

AðνÞ
ΔL¼2 ¼ AA þ KE0AB þABKE þ KE0ACKE;

KE ¼
χþp ð0ÞC̃

1 − C̃Gþ
E ð0; 0Þ

; ð6Þ

whereAA, AB, and AC denote the first diagram in the first,
second, and third rows of Fig. 1, respectively (without the
wave functions at 0, in the case of AB and AC). AB is
similar to AB and is not shown in Fig. 1.

FIG. 1. Diagrammatic representation of LO contributions to
nn → ppee. Double, dashed, and plain lines denote nucleons,
pions, and leptons, respectively. Gray circles denote the nucleon
axial and vector currents, and the black square denotes an
insertion of mββ. The blue ellipse represents iteration of Vπ . In
the counterterm amplitude (fourth line) the black square repre-
sents gNNν . The ellipses in the second to fourth lines denote
diagrams with arbitrary numbers of bubble insertions.
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• The operator is actually with a simple form 

• The LEC needs to be determined

calculations and (ii) relating it via chiral symmetry to
electromagnetic low-energy constants (LECs) that control
isospin breaking in the two-nucleon sector. A combination
of couplings involving gNNν can be fit to nucleon-nucleon
charge-independence-breaking (CIB) observables, con-
firming the LO scaling of this coupling. Based on this,
we argue that the impact of gNNν on nuclear matrix elements
of relevance to experiments can be significant, which has
consequences for the interpretation of 0νββ experiments in
terms of the light Majorana-neutrino mass.
The need for a LO short-rangeΔL ¼ 2 interaction.—We

consider a scenario in which LNV at low energy is
dominated by the electron-neutrino Majorana mass

LΔL¼2 ¼ −
mββ

2
νTeLCνeL; ð1Þ

where C ¼ iγ2γ0 denotes the charge conjugation matrix.
The nuclear effective Hamiltonian can be written as

Heff ¼ Hstrong þ 2G2
FV

2
udmββēLCēTLVν; ð2Þ

in terms of the Fermi constant GF and the Vud element of
the Cabibbo-Kobayashi-Maskawa matrix [32,33]. The
neutrino potential Vν can be obtained from two-nucleon
irreducible diagrams mediating nn → ppee to a given
order in p=Λχ . Within Weinberg’s power counting, the
only LO contribution [26] comes from the exchange of
potential neutrinos, with q0 ≪ jqj,

Vν;0ðqÞ ¼ τð1Þþτð2Þþ
1

q2

!
1 − g2Aσ

ð1Þ · σð2Þ

þ g2Aσ
ð1Þ · q σð2Þ · q

2m2
π þ q2

ðq2 þm2
πÞ2

"
; ð3Þ

where gA ≃ 1.27 is the nucleon axial coupling,mπ is the pion
mass,andq is themomentumtransfer.N2LOtermsarise from
corrections to the single nucleon weak currents, irreducible
one-loop diagrams, and contact interactions mediating
ππ → ee, n → pπþee, and nn → ppee. In particular, the
short-range potential includes a two-nucleon term [26]

Vν;CT ¼ −2gNNν τð1Þþτð2Þþ; ð4Þ

where the LEC gNNν isO(ð4πFπÞ−2) inWeinberg’s counting
andFπ ¼ 92.2 MeV is the pion decay constant. However, it
is known that Weinberg’s power counting leads to incon-
sistent results in nucleon-nucleon scattering [34–37] and
nuclearprocessesmediatedbyexternal currents [38], due toa
conflict between naive dimensional analysis and nonpertur-
bative renormalization. We therefore investigate the scaling
of gNNν by studying the amplitude Aðnn → ppeeÞ≡AΔL¼2

with strong interactions Hstrong included nonperturbatively.
We work at LO in chiral EFT and focus on the scattering

of two neutrons to two protons in the 1S0 wave, where
Hstrong has short-range and Yukawa components,

V0ðqÞ ¼ C̃þ VπðqÞ; VπðqÞ ¼ −
g2A
4F2

π

m2
π

q2 þm2
π
; ð5Þ

with C̃ ∼OðF−2
π ; m2

πF−4
π Þ [31,34,35]. We have checked

that transitions involving higher partial waves such as
3P0;1 → 3P0;1 are correctly renormalized and do not require
enhanced ΔL ¼ 2 counterterms.
The contributions to AΔL¼2 from the exchange of a light

neutrino (AðνÞ
ΔL¼2) are shown in Fig. 1. The blue ellipse

denotes the iteration of the Yukawa potential VπðqÞ. The
diagrams in the second and third rows include an infinite
number of bubbles, dressed with iterations of Vπ . Without
loss of generality for our arguments, we use the kinematics
nðpÞnð−pÞ→pðp0Þpð−p0Þeðpe1¼0Þeðpe2¼0Þ, with jpj ¼
1 MeV and, correspondingly, jp0j ¼ 38 MeV.
AðνÞ

ΔL¼2 can be expressed in terms of the Yukawa “in” and
“out”wave functions χ%p ðrÞ and the propagatorsG%

E ðr;r0Þ¼
hr0jðE−T−Vπ%i0þÞ−1jri [34,37]. Observing that the
bubble diagrams in Fig. 1 are related to Gþ

E ð0; 0Þ, while
the triangles dressed by Yukawa potentials are related to
χþp ð0Þ and χ−p0ð0Þ& ¼ χþp0ð0Þ [34], the LO amplitude reads

AðνÞ
ΔL¼2 ¼ AA þ KE0AB þABKE þ KE0ACKE;

KE ¼
χþp ð0ÞC̃

1 − C̃Gþ
E ð0; 0Þ

; ð6Þ

whereAA, AB, and AC denote the first diagram in the first,
second, and third rows of Fig. 1, respectively (without the
wave functions at 0, in the case of AB and AC). AB is
similar to AB and is not shown in Fig. 1.

FIG. 1. Diagrammatic representation of LO contributions to
nn → ppee. Double, dashed, and plain lines denote nucleons,
pions, and leptons, respectively. Gray circles denote the nucleon
axial and vector currents, and the black square denotes an
insertion of mββ. The blue ellipse represents iteration of Vπ . In
the counterterm amplitude (fourth line) the black square repre-
sents gNNν . The ellipses in the second to fourth lines denote
diagrams with arbitrary numbers of bubble insertions.
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Approaches

• Modern nuclear structure calculations relay on our 
understanding of nuclear force and many-body 
correlations 

• For the nuclear force used in many-body approaches: 

• Realistic nuclear force — derived from bare nucleon 
force and softened by certain methods (ab initio) 

• Phenomenological force — starting with certain 
symmetries and the parameters are fitted by nuclear 
properties

�22

IMSRG, ab initio CC, VSIMSRG+NSM, … 



Approaches

• Most traditional methods used in double beta decay calculations 
are based on phenomenological forces 

• Shell Model (configuration interaction) 

• DFT based on relativistic and non-relativistic mean-field 

• GCM based on DFT 

• QRPA based on DFT or phenomenological mean-field 

• Geometric models without explicit inclusions of nuclear forces: 
pSU(3), IBM etc.

�23



Results

• The light neutrino mass mechanism has been in last decade well 
investigated although the new LO terms haven’t been included 

• It is impossible to give a complete list 

• NSM: renormalization of operator; larger model space 

• QRPA: isospin symmetry restoration 

• IBM: ISR 

• PHFB 

• DFT(+GCM): relativistic

�24

Caurier 12’, Horoi 13’, Menendez 14’, Iwata 16’, Menendez 18’, Coraggio 20’

Vaquero 13’, Song14’, Yao 15’, Song17’, Jiao 17’, Wang 23’ 

Barea 13’, Barea15’ 

Mustonen 13’, Simkovic13’, Hyvarinen 15’, Fang 18’ , Lv22’

Sahu 15’, Rath 19’, Wang 21’ 



Results

• Compared to light neutrino mass mechanism, there are less on 
heavy neutrino mass 

• SM: renormalization of operator; larger model space 

• QRPA: isospin symmetry restoration 

• IBM: ISR 

• PHFB 

• DFT+GCM: relativity

�25

Horoi 13’, Menendez 18’

Song17’

Barea15’ 

Hyvarinen 15’, Fang 18’ 

Rath 19’



Results

• Deviations from different methods 

• Different mechanisms have different deviation 

• Originating from various sources
�26
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C. Many-body methods

In the absence of a 0⌫��-decay observation, and as
long as the light-neutrino masses, their ordering, or the
BSM parameters responsible for the decay are not known,
NMEs need to be obtained from theoretical nuclear struc-
ture calculations. Here we present updated NME results
and describe briefly the nuclear many-body methods used
to obtain them. A more thorough discussion of NMEs
and nuclear many-body methods can be found in Engel
and Menéndez (2017).

1. Current status for long-range nuclear matrix elements

Comparisons of NMEs obtained with di↵erent many-
body approaches are common in the 0⌫��-decay liter-
ature (Bahcall et al., 2004; Engel and Menéndez, 2017;
Feruglio et al., 2002; Gómez-Cadenas et al., 2012; Vo-
gel, 2012b). Figure 9 shows updated results for 0⌫��-
decay NMEs of eight �� emitters, covering calculations
from the nuclear shell model (NSM), the quasiparticle
random-phase approximation (QRPA) method, the in-
teracting boson model (IBM) and energy-density func-
tional (EDF) theory. Also included are recent ab ini-
tio 48Ca NMEs obtained with the in-medium generator
coordinate method (IM-GCM), a multi-reference version
of the similarity renormalization group (IMSRG), and
coupled-cluster (CC) theory, and 48Ca 76Ge and 82Se
NMEs from the valence-space (VS) IMSRG method. Ta-
ble I collects the NMEs for the five nuclei most relevant
for next-generation experiments, and indicates the range
of NMEs for each nuclear structure method, obtained by
combining the results of di↵erent calculations for each
approach.

The variation in M0⌫ in Fig. 9, about a factor three,
highlights the uncertainties introduced by the approxi-
mate solutions of the nuclear many-body problem. With
few exceptions among the �� emitters considered, the
NMEs follow a similar trend: shell model NMEs tend
to be smallest, and EDF theory ones largest, with the
IBM and QRPA somewhere in between. Recent QRPA
calculations by Fang et al. (2018) including deformation
(violet bars), however, modify this picture as they find
smaller NMEs than spherical QRPA calculations, close
to the shell model NMEs. These results follow a ten-
dency of smaller QRPA NMEs hinted by the sophisti-
cated QRPA of Mustonen and Engel (2013) — magenta
crosses. Nevertheless, the deformed QRPA likely under-
estimates NMEs because the current calculation misses
the e↵ect of configuration mixing that enhances their
value (Rodriguez and Martinez-Pinedo, 2010). Finally,
the 48Ca NMEs from the IM-GCM (Yao et al., 2020),
VS-IMSRG (Belley et al., 2021), and CC (Novario et al.,
2021) theory are consistent with each other and smaller
than the shell model ones. The VS-IMSRG 76Ge and
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FIG. 9 Nuclear matrix elements M0⌫ for light-neutrino ex-
change from di↵erent many-body methods. NSM: black
(Menéndez, 2018), grey (Horoi and Neacsu, 2016b), light-grey
(Iwata et al., 2016) bars and grey stars (Coraggio et al., 2020,
2022); QRPA: deformed in violet bars (Fang et al., 2018)), and
spherical in magenta (Mustonen and Engel, 2013) and pur-
ple (Terasaki, 2015, 2020; Terasaki and Iwata, 2019) crosses,
red circles (Šimkovic et al., 2018b), and orange multiplica-
tion signs (Hyvarinen and Suhonen, 2015); IBM: brown bars
(Barea et al., 2015a; Deppisch et al., 2020a); EDF theory:
nonrelativistic in blue diamonds (Rodriguez and Martinez-
Pinedo, 2010) and blue up-triangles (López Vaquero et al.,
2013)), and relativistic in light-blue down-triangles (Song
et al., 2017); IMSRG: IM-GCM in the light green 48Ca bar
(Yao et al., 2020), and valence space in green bars (Belley
et al., 2021); and CC theory: dark green 48Ca bar (Novario
et al., 2021).

82Se NMEs are also smaller than in other calculations,
but currently the ab initio description of these nuclei is
of lower quality than for 48Ca, see Sec. IV.E.

Overall, the smaller ab initio NMEs suggest that phe-
nomenological NMEs might be overestimated. This is
consistent with the fact that, as discussed in the follow-
ing sections, the many-body methods predicting larger
NMEs, energy-density functional theory and the IBM,
do not include explicitly proton-neutron pairing correla-
tions which are known to reduce the value of the NMEs.
Further, especially for 48Ca and 76Ge ab initio results are
not far from shell-model and some of the QRPA ones, the
only two-body methods which so far have predicted 2⌫��
or 2⌫ECEC half-lives before their measurement (see Sec.
IV.D.3). Nonetheless, especially compared to concerns
related to a dramatic reduction of NMEs due to “g

A

quenching” (see Sec. IV.D), the overestimation of the
more phenomenological NMEs appears relatively moder-
ate, taking into account that the ab initio methods used
for 48Ca reproduce well �-decay matrix elements without
any adjustments.

30

 0

 1

 2

 3

 4

 5

 6

 7

48Ca 76Ge 82Se 100Mo 116Cd 130Te 136Xe 150Nd

M
sh

o
rt

0
ν
  

  
/(

g
νN

N
 m

π2
)

IMSRG

NSM

QRPA

IBM

FIG. 10 Short-range light-neutrino exchange nuclear matrix
elements M0⌫

short without the coupling gNN
⌫

. Results from the
NSM: black (Menéndez, 2018), grey (Neacsu and Horoi, 2015;
Sen’kov and Horoi, 2016; Sen’kov et al., 2014), and light grey
(Jokiniemi et al., 2021b) bars; the QRPA: deformed in violet
bars (Fang et al., 2018) and spherical in orange mulitplication
signs (Hyvarinen and Suhonen, 2015) and red bars (Jokiniemi
et al., 2021b)); the IBM: brown bars (Barea et al., 2015a;
Deppisch et al., 2020a); and the IM-GCM: light green bars
(Wirth et al., 2021).
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FIG. 11 Nuclear matrix elements M0⌫
heavy for the heavy-

neutrino exchange 0⌫�� decay. Results from the NSM: black
(Menéndez, 2018) and grey (Horoi and Neacsu, 2016b) bars;
the QRPA: deformed in violet bars (Fang et al., 2018) and
spherical in orange multiplication signs (Hyvarinen and Suho-
nen, 2015); the IBM: brown bars (Barea et al., 2015a; Dep-
pisch et al., 2020a); and relativistic EDF theory: light-blue
down-triangles (Song et al., 2017). Note that M0⌫

heavy includes
an additional factor (m

N

m
e

)2/m2
⇡

with respect to the stan-
dard definition.

be extended to deal with 0⌫�� decay, see Sec. IV.C.7.
Nonetheless, even the ab initio NME uncertainties in
Fig. 9 are underestimated, because a relevant ingredi-
ent, two-body currents at finite momentum transfers, is
not yet included in the calculations.

An additional uncertainty not immediately apparent
in Fig. 9 concerns the possible reduction of the NMEs,
usually known as “g

A

quenching”. This e↵ect was pro-
posed to compensate the finding that calculated GT �

matrix elements tend to overpredict measured values
by a roughly uniform factor. This introduces a poten-
tially large uncertainty, because a naive direct quench-
ing of the axial coupling constant ge↵

A

= 0.7g
A

, as has
been suggested often in the literature, would reduce the
0⌫��-decay NMEs by (0.7)2 ⇠ 1/2, and decay rates by
(0.7)4 ⇠ 1/4. The “g

A

quenching” highlights deficien-
cies in the nuclear theory calculations, but it is not clear
how to scale them from � to 0⌫�� decays. For this rea-
son, Fig. 9 assumes the unquenched g

A

= 1.27. Recent
ab initio calculations that reproduce � decays without
any “g

A

quenching” pave the way to solve this puzzle
(Gysbers et al., 2019). We address this issue in detail in
Sec. IV.D.
In addition to the nuclear structure of the initial and

final nuclei, the range of the 0⌫��-decay operator has a
strong impact on the NMEs. Figures 10 and 11 com-
pare M0⌫

short

/(gNN

⌫

m2

⇡

) and M0⌫

heavy

, corresponding to the
short-range light-neutrino exchange term (without cou-
pling) and the exchange of heavy neutrinos, discussed
in Secs. IV.B.2 and IV.B.1, respectively. Except for the
QRPA, short-range and heavy-neutrino NMEs are close.
This suggests that di↵erences in M0⌫

long

are due to how
longer-range nuclear correlations are treated di↵erently
in the various many-body methods (Menéndez, 2018).

As for the contact term, combining the short-
range NMEs in Fig. 10 with gNN

⌫

values from charge-
independent-breaking Hamiltonians leads to sizable con-
tributions with respect toM0⌫

long

(Jokiniemi et al., 2021b),
both for the shell model (light grey bars, ⇠ 30% impact)
and for the QRPA (red bars, ⇠ 50% e↵ect). These NMEs
are consistent with other shell model and QRPA estima-
tions in Fig. 10; the main di↵erence is that the latter
use a dipole f

S

instead of a gaussian. The value of gNN

⌫

is found to be positive in 48Ca and other lighter nuclei
in (Wirth et al., 2021). Therefore, Fig. 10 suggests that
the di↵erence between NMEs in Fig. 9 will persist, with
QRPA continuing to prefer larger M0⌫

light

values.
The large error bars in Figs. 10 and 11 are due to

SRCs, typically ignored because doing so simplifies com-
putations and does not a↵ect much most nuclear struc-
ture properties. However, for 0⌫��-decay NME SRCs are
extracted from calculations which include SRCs explic-
itly (Cruz-Torres et al., 2018; Kortelainen et al., 2007;
Šimkovic et al., 2009) typically via prescriptions used in
other many-body calculations. The error bars in Fig. 9,
10, and 11 indicate a higher sensitivity to SRCs inM0⌫

heavy

and M0⌫

short

than in M0⌫

long

, where the impact is rela-
tively small as also indicated by Engel and Hagen (2009).
Nonetheless, very recently, the SRCs captured by an ab
initio method have been combined with the shell model
using an e↵ective theory for SRCs validated in compar-
isons to SRC measurements (Cruz-Torres et al., 2021).
The results suggest a larger ⇠ 30% reduction in M0⌫

long

due to SRCs (Weiss et al., 2021), which is similar to the
e↵ect found by Benhar et al. (2014).



Results 

• Comparative studies between SM and EDF 

• They come out with the conclusion, SM and EDF are similar 
at some level when seniority is 0 for SM and only spherical 
shape are assumed for EDF

�27

CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)

corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.

024311-5

CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)
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states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν
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calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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FIG. 2. (Color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47]. The
QRPA results are shown for gT =0

pp = 0.673 (red dots) and gT =0
pp =

0.643 (red crosses). The CI results are shown for the JUN45 (dot),
jj44bpn (cross), and gcn28:50 (triangle) Hamiltonians.

pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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FIG. 3. (Color online) The 0N NME for heavy-neutrino decay
of 76Ge. See caption for Fig. 2. The QRPA point with the triangle is
from Ref. [29].

R0N
V = 1.9 as the number of orbitals included in the sums

increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,
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FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.
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pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.
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spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
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V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
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up to about 25 MeV in excitation energy is reduced by this
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rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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than that obtained with the first-order expectation value of the
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the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
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one finds R0ν
pp = {M0ν

GT/[M0ν
GT(Jpp = 0+)]} = 0.53 for CI [56],

0.90 for IBM-2 [39], and 0.72 for QRPA. The reason for these
differences may be due to the truncation within jj44 made by
IBM-2 and QRPA. For the 0N NME this ratio is R0N

pp = 0.89
in CI [56]; the cancellation from higher Jpp is much less,
the result is dominated by the Jpp = 0+ contribution, and its
connection to pairing is discussed above. In the jj44 model
space the agreement between the 0N NME (Fig. 3) for CI,
QRPA, and IBM-2 is much better than that for 0ν (Fig. 4)
since the cancellation from higher Jpp terms is small.

Holt and Engel [75] considered the effect of 2p-2h admix-
tures beyond the jj44 model space by treating the effective
transition operator in MBPT. They found a 20% increase in
the 0ν NME for 76Ge. Part of these MBPT contributions goes
beyond QRPA. At present this is the best estimate for the
correction beyond CI in the jj44 model space. We will use
R0ν

V = 1.2(2) with a generously large value of 20% for its
uncertainty.

The results shown above are based on the CD-Bonn SRC.
This is the weakest of several SRCs that have been used [55].
The strongest is the AV18 SRC, and the UCOM [76] SRC is
about half way between. For our final result we use the average
of CD-Bonn and AV18 with an error that encompasses both.
The result is that the 0N NMEs are multiplied by R0N

S =
0.80(20) and the 0ν NMEs are multiplied by R0ν

S = 0.97(3),
where RS is the SRC correction relative to the CD-Bonn
starting point.

Finally, we combine all of the factors discussed above
in the form M = [MGT(CI)][RV ][RS][RGT]. Based on the
experimental value for 2ν the NME is

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due to
mixing beyond the jj44 model space. The error in the CI
NME reflects the spread obtained with the three different
Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
(4)

where the CI value is from Fig. 3. The error for 0N is
dominated by the SRC correction. Finally for 0ν,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 4. The error for 0ν is dominated
by an estimated uncertainty of 20% in the correction beyond
jj44. Comparison to previous values must take into account
the isospin correction for QRPA and IBM discussed above
and the choice of SRC (in our RS factor). The range is from
2.8 for CI [33] to 4.7 for IBM-2 [41] and 5.3 for QRPA [29].

Our result is in between these, but it is not an average since
we have made comments on the deficiencies of all of these
models. Using Eq. (1) with the experimental limit of the half-
life (T 0ν

1/2 > 3 × 1025 yr [54]) and the phase-space factor from
Ref. [44], we obtain |ην |mec

2 < 0.3 eV.
Sometimes the 2ν correction factor (0.45 in this case) is

expressed in terms of an effective gA value (g′
A = 0.85 in this

case). Since the factor (gA)4 appears inside the phase-space
factor of Eq. (1), one might think that the decay rate for 0ν and
0N could be reduced by a factor of (g′

A/1.27)4 = 0.20 [41,77].
However, this g′

A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occupation
numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
terms of changes relative to the various contributions we have
discussed, and evaluations for other cases of interest [46]
should be performed.
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The second term is the empirical correction for RV due to
mixing beyond the jj44 model space. The error in the CI
NME reflects the spread obtained with the three different
Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
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the isospin correction for QRPA and IBM discussed above
and the choice of SRC (in our RS factor). The range is from
2.8 for CI [33] to 4.7 for IBM-2 [41] and 5.3 for QRPA [29].

Our result is in between these, but it is not an average since
we have made comments on the deficiencies of all of these
models. Using Eq. (1) with the experimental limit of the half-
life (T 0ν

1/2 > 3 × 1025 yr [54]) and the phase-space factor from
Ref. [44], we obtain |ην |mec

2 < 0.3 eV.
Sometimes the 2ν correction factor (0.45 in this case) is

expressed in terms of an effective gA value (g′
A = 0.85 in this

case). Since the factor (gA)4 appears inside the phase-space
factor of Eq. (1), one might think that the decay rate for 0ν and
0N could be reduced by a factor of (g′

A/1.27)4 = 0.20 [41,77].
However, this g′

A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occupation
numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
terms of changes relative to the various contributions we have
discussed, and evaluations for other cases of interest [46]
should be performed.
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reduced transition operators, where M̃0ν is defined as

M̃0ν(βI ,βF ) = NFNI ⟨βF |Ô
0ν P̂ J=0P̂NI P̂ZI |βI⟩, (6)

with N−2
a = ⟨βa|P̂ J=0

00 P̂NaP̂Za |βa⟩ for a = I, F . It
is seen that the error arisen from the first-order non-
relativistic reduction is marginal, which can either in-
crease or decrease the total NME by a factor within 2%.
This value is modified only slightly in the full GCM cal-
culation, for instance becoming ∼ 5% for 150Nd [37]. The
one-body charge-changing nucleon current, Eq. (4), gen-
erates not only the Fermi and Gamow-Teller (GT) terms
but also tensor terms that have been neglected in the non-
relativistic study [34]. With the help of non-relativistic
approximation of the transition operator, one can isolate
the contribution of the tensor part [26, 37], which is ob-
tained by subtracting the contributions of Fermi and GT
terms from the total NME. It is shown in Table I that
the contribution of tensor terms is within 5% of the total
NME.

FIG. 4: (Color online) Normalized NME M̃0ν as a function
of the intrinsic deformation parameter β of the initial AZ and
final A(Z + 2) nuclei.

Figure 4 displays the normalized NME M̃0ν as a func-
tion of the intrinsic quadrupole deformation βI and βF
of the mother and daughter nuclei, respectively. Simi-
lar to the behavior of the GT part shown in the MR-
DFT (D1S) calculation [34], the normalized NME M̃0ν

is concentrated rather symmetrically along the diagonal
line βI = βF , implying that the decay between nuclei
with different deformation is strongly hindered. More-
over, the M̃0ν has the largest value at the spherical con-
figuration for most candidate nuclei except for 48Ca-Ti,
96Zr-Mo, and 136Xe-Ba. It implies that generally the
0νββ-decay is favored if both nuclei are spherical. The
largest M̃0ν in 136Xe-Ba is found around the deformation

FIG. 5: (Color online) (a) Decomposition of the total NMEs
from the final GCM+PNAMP (PC-PK1) calculation; (b)
the total NMEs calculated with either only spherical config-
uration or full configurations, in comparison with those of
GCM+PNAMP (D1S) from Ref. [34]. The shaded area indi-
cates the uncertainty of the SRC effect within 10%. See text
for more details.

region with βI = βF ≃ 0.5, at which deformed configura-
tion, pairing energy is peaked in both nuclei due to the
very high single-particle level density. However, this con-
figuration (β ≃ 0.5) has a negligible contribution to the
final NME of 136Xe-Ba because its weight is almost zero
in the ground-state wave function, cf. Fig. 3.

Figure 5(a) displays the contribution of each cou-
pling term (AA, V V, PP,MM,AP ) in Eq.(4) to the to-
tal NMEs. It is shown that the weak-magnetism (MM)
term is negligible (∼ 4%). The interference term (AP )
of the axial-vector and pseudoscalar coupling has an op-
posite contribution (∼ 30%), which almost cancels out
the sum of V V , PP , and MM terms. Of particular
interest is that the total NME has a very similar be-
havior as that of the predominated AA term with the
ratio RAA ≃ 95%. Actually, we have found that the
deformation-dependent NMEs shown in Fig. 4 are also
very similar even if we include only the AA term. It in-
dicates that the AA term provides a good approximation
for the total NME, Eq.(3). In the non-relativistic approx-
imation, the two-current operator with only the axial-
vector coupling term is simplified as J †

L,µ(x1)J
µ†
L (x2) =

−g2A(q
2)σ(1) · σ(2)τ (1)− τ (2)− , the calculation of which is

much cheaper than computing the full terms, cf. (4).
Similar conclusion can also be made based on the re-
sults of QRPA calculation [26] using the non-relativistic
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FIG. 2. (Color online) Dependence of the GCM (solid) and
QRPA (dashed) 0νββ matrix elements on the strength gT =0 of the
isoscalar pairing interaction. The red (upper) and blue (lower) lines
of each type correspond to the interaction parameters extracted from
SkO′ and SkM*. The divergence in the QRPA near gT =0/ḡT =1 = 1.5
is discussed in the text.

To clarify this last statement, we show the GCM and QRPA
matrix elements as functions of gT =0/ḡT =1 in Fig. 2. The
QRPA curves lie slightly above their GCM counterparts until
gT =0/ḡT =1 reaches a critical value slightly larger than 1.5;
at that point a mean-field phase transition from an isovector
pair condensate to an isoscalar condensate causes the famous
QRPA “collapse.” The collapse is spurious, as the GCM results
show. Its presence in mean-field theory makes the QRPA
unreliable near the critical point. It is actually a bit of a
coincidence that the QRPA matrix elements in the table are
as close as they are to those of the GCM; a small change in
gT =0 would alter them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather than
1.0 does not have a huge effect on the 0νββ matrix element).
The GCM result is not only better behaved near the critical
point but also, we believe, quite accurate. In the SO(8) model
used to test many-body methods in ββ decay many times,
the GCM result is nearly exact for all gT =0. That is not the
case for extensions of the QRPA that attempt to ameliorate
its shortcomings [32,33], though some of those work better
around the phase transition than others.

To show why the GCM behaves well, we dis-
play in the bottom right part of Fig. 3 the quantity
NφI

NφF
⟨φF |PF M̂0νPI |φI ⟩, where |φI ⟩ is a quasiparticle vac-

uum in 76Ge constrained to have isoscalar pairing amplitude
φI , φF is an analogous state in 76Se, PI , PF project onto states
with angular momentum zero and the appropriate values of
Z and N , and NφI

,NφF
normalize the projected states. This

quantity is the contribution to the 0νββ matrix element from
states with particular values of the initial and final isoscalar
pairing amplitudes. The contribution is positive around zero
condensation in the two nuclei and negative when the final
pairing amplitude is large. Thus the GCM states must contain
components with significant pn pairing when gT =0 is near its
fit value. The appearance of this plot is different from those
in which the matrix element is plotted versus initial and final
deformation [6–8]. Here the matrix element is small or negative
even if the initial and final pairing amplitudes have the same
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FIG. 3. (Color online) Bottom right: NφI
NφF

⟨φF |PF M̂0ν

PI |φI ⟩ for projected quasiparticle vacua with different values of the
initial and final isoscalar pairing amplitudes φI and φF , from the
SkO′-based interaction (see text). Top and bottom left: Square of
collective wave functions in 76Ge and 76Se.

value, as long as that value is large. The behavior reflects the
qualitatively different effects of isovector and isoscalar pairs
on the matrix element [3], effects that have no analog in the
realm of deformation.

The weight function f in the GCM ansatz multiplies
nonorthogonal states and so is not really a “collective ground-
state wave function.” The object that does play that role is a
member of an orthogonalized set defined, e.g., in Refs. [4]
and [7]. The top and left parts of Fig. 3 show the square of
this collective wave function for 76Ge and 76Se, with gT =0

set both to zero and the fit value. It is clear in both nuclei,
but particularly in 76Se, that the isoscalar pairing interaction
pushes the wave function into regions of large φ, where
the matrix element in the bottom right panel is significantly
reduced. It is also clear that for gT =0 ̸= 0 the collective wave
functions are far from the Gaussians that one would obtain in
the harmonic (QRPA) approximation. Isoscalar pairing really
is, and must be treated as, a large-amplitude mode.

We turn finally to the more realistic calculation that includes
both deformation and the pn pairing amplitude as generator
coordinates. We fit the couplings in H just as described earlier;
the strength of the quadrupole interaction no longer vanishes
and some of the other parameters change slightly: gT =1

0 = 0.90
for the interaction based on SkO′ and 0.79 for that based on
SkM*, and gT =0 = 1.75 for SkO′ and 1.51 for SkM*, in units
of ḡT =1. The calculated B(GT+) in both cases is larger than the
experimental data with or without quenching, which therefore
does not affect the value of gT =0.

First we analyze the influence of the number and
angular-momentum projection on energy. The bottom part
of Fig. 1 shows the projected potential energy surfaces
⟨β,φ|PHP |β,φ⟩ for two values of φ, along with the
unprojected surface from the top part of the panel. Projecting
at φ = 0 without including pn interactions, the figure shows,
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FIG. 10 Short-range light-neutrino exchange nuclear matrix
elements M0⌫

short without the coupling gNN
⌫

. Results from the
NSM: black (Menéndez, 2018), grey (Neacsu and Horoi, 2015;
Sen’kov and Horoi, 2016; Sen’kov et al., 2014), and light grey
(Jokiniemi et al., 2021b) bars; the QRPA: deformed in violet
bars (Fang et al., 2018) and spherical in orange mulitplication
signs (Hyvarinen and Suhonen, 2015) and red bars (Jokiniemi
et al., 2021b)); the IBM: brown bars (Barea et al., 2015a;
Deppisch et al., 2020a); and the IM-GCM: light green bars
(Wirth et al., 2021).
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neutrino exchange 0⌫�� decay. Results from the NSM: black
(Menéndez, 2018) and grey (Horoi and Neacsu, 2016b) bars;
the QRPA: deformed in violet bars (Fang et al., 2018) and
spherical in orange multiplication signs (Hyvarinen and Suho-
nen, 2015); the IBM: brown bars (Barea et al., 2015a; Dep-
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down-triangles (Song et al., 2017). Note that M0⌫
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)2/m2
⇡

with respect to the stan-
dard definition.

be extended to deal with 0⌫�� decay, see Sec. IV.C.7.
Nonetheless, even the ab initio NME uncertainties in
Fig. 9 are underestimated, because a relevant ingredi-
ent, two-body currents at finite momentum transfers, is
not yet included in the calculations.

An additional uncertainty not immediately apparent
in Fig. 9 concerns the possible reduction of the NMEs,
usually known as “g

A

quenching”. This e↵ect was pro-
posed to compensate the finding that calculated GT �

matrix elements tend to overpredict measured values
by a roughly uniform factor. This introduces a poten-
tially large uncertainty, because a naive direct quench-
ing of the axial coupling constant ge↵

A

= 0.7g
A

, as has
been suggested often in the literature, would reduce the
0⌫��-decay NMEs by (0.7)2 ⇠ 1/2, and decay rates by
(0.7)4 ⇠ 1/4. The “g

A

quenching” highlights deficien-
cies in the nuclear theory calculations, but it is not clear
how to scale them from � to 0⌫�� decays. For this rea-
son, Fig. 9 assumes the unquenched g

A

= 1.27. Recent
ab initio calculations that reproduce � decays without
any “g

A

quenching” pave the way to solve this puzzle
(Gysbers et al., 2019). We address this issue in detail in
Sec. IV.D.
In addition to the nuclear structure of the initial and

final nuclei, the range of the 0⌫��-decay operator has a
strong impact on the NMEs. Figures 10 and 11 com-
pare M0⌫

short

/(gNN

⌫

m2

⇡

) and M0⌫

heavy

, corresponding to the
short-range light-neutrino exchange term (without cou-
pling) and the exchange of heavy neutrinos, discussed
in Secs. IV.B.2 and IV.B.1, respectively. Except for the
QRPA, short-range and heavy-neutrino NMEs are close.
This suggests that di↵erences in M0⌫

long

are due to how
longer-range nuclear correlations are treated di↵erently
in the various many-body methods (Menéndez, 2018).

As for the contact term, combining the short-
range NMEs in Fig. 10 with gNN

⌫

values from charge-
independent-breaking Hamiltonians leads to sizable con-
tributions with respect toM0⌫

long

(Jokiniemi et al., 2021b),
both for the shell model (light grey bars, ⇠ 30% impact)
and for the QRPA (red bars, ⇠ 50% e↵ect). These NMEs
are consistent with other shell model and QRPA estima-
tions in Fig. 10; the main di↵erence is that the latter
use a dipole f

S

instead of a gaussian. The value of gNN

⌫

is found to be positive in 48Ca and other lighter nuclei
in (Wirth et al., 2021). Therefore, Fig. 10 suggests that
the di↵erence between NMEs in Fig. 9 will persist, with
QRPA continuing to prefer larger M0⌫

light

values.
The large error bars in Figs. 10 and 11 are due to

SRCs, typically ignored because doing so simplifies com-
putations and does not a↵ect much most nuclear struc-
ture properties. However, for 0⌫��-decay NME SRCs are
extracted from calculations which include SRCs explic-
itly (Cruz-Torres et al., 2018; Kortelainen et al., 2007;
Šimkovic et al., 2009) typically via prescriptions used in
other many-body calculations. The error bars in Fig. 9,
10, and 11 indicate a higher sensitivity to SRCs inM0⌫

heavy

and M0⌫

short

than in M0⌫

long

, where the impact is rela-
tively small as also indicated by Engel and Hagen (2009).
Nonetheless, very recently, the SRCs captured by an ab
initio method have been combined with the shell model
using an e↵ective theory for SRCs validated in compar-
isons to SRC measurements (Cruz-Torres et al., 2021).
The results suggest a larger ⇠ 30% reduction in M0⌫

long

due to SRCs (Weiss et al., 2021), which is similar to the
e↵ect found by Benhar et al. (2014).

28

C. Many-body methods

In the absence of a 0⌫��-decay observation, and as
long as the light-neutrino masses, their ordering, or the
BSM parameters responsible for the decay are not known,
NMEs need to be obtained from theoretical nuclear struc-
ture calculations. Here we present updated NME results
and describe briefly the nuclear many-body methods used
to obtain them. A more thorough discussion of NMEs
and nuclear many-body methods can be found in Engel
and Menéndez (2017).

1. Current status for long-range nuclear matrix elements

Comparisons of NMEs obtained with di↵erent many-
body approaches are common in the 0⌫��-decay liter-
ature (Bahcall et al., 2004; Engel and Menéndez, 2017;
Feruglio et al., 2002; Gómez-Cadenas et al., 2012; Vo-
gel, 2012b). Figure 9 shows updated results for 0⌫��-
decay NMEs of eight �� emitters, covering calculations
from the nuclear shell model (NSM), the quasiparticle
random-phase approximation (QRPA) method, the in-
teracting boson model (IBM) and energy-density func-
tional (EDF) theory. Also included are recent ab ini-
tio 48Ca NMEs obtained with the in-medium generator
coordinate method (IM-GCM), a multi-reference version
of the similarity renormalization group (IMSRG), and
coupled-cluster (CC) theory, and 48Ca 76Ge and 82Se
NMEs from the valence-space (VS) IMSRG method. Ta-
ble I collects the NMEs for the five nuclei most relevant
for next-generation experiments, and indicates the range
of NMEs for each nuclear structure method, obtained by
combining the results of di↵erent calculations for each
approach.

The variation in M0⌫ in Fig. 9, about a factor three,
highlights the uncertainties introduced by the approxi-
mate solutions of the nuclear many-body problem. With
few exceptions among the �� emitters considered, the
NMEs follow a similar trend: shell model NMEs tend
to be smallest, and EDF theory ones largest, with the
IBM and QRPA somewhere in between. Recent QRPA
calculations by Fang et al. (2018) including deformation
(violet bars), however, modify this picture as they find
smaller NMEs than spherical QRPA calculations, close
to the shell model NMEs. These results follow a ten-
dency of smaller QRPA NMEs hinted by the sophisti-
cated QRPA of Mustonen and Engel (2013) — magenta
crosses. Nevertheless, the deformed QRPA likely under-
estimates NMEs because the current calculation misses
the e↵ect of configuration mixing that enhances their
value (Rodriguez and Martinez-Pinedo, 2010). Finally,
the 48Ca NMEs from the IM-GCM (Yao et al., 2020),
VS-IMSRG (Belley et al., 2021), and CC (Novario et al.,
2021) theory are consistent with each other and smaller
than the shell model ones. The VS-IMSRG 76Ge and
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FIG. 9 Nuclear matrix elements M0⌫ for light-neutrino ex-
change from di↵erent many-body methods. NSM: black
(Menéndez, 2018), grey (Horoi and Neacsu, 2016b), light-grey
(Iwata et al., 2016) bars and grey stars (Coraggio et al., 2020,
2022); QRPA: deformed in violet bars (Fang et al., 2018)), and
spherical in magenta (Mustonen and Engel, 2013) and pur-
ple (Terasaki, 2015, 2020; Terasaki and Iwata, 2019) crosses,
red circles (Šimkovic et al., 2018b), and orange multiplica-
tion signs (Hyvarinen and Suhonen, 2015); IBM: brown bars
(Barea et al., 2015a; Deppisch et al., 2020a); EDF theory:
nonrelativistic in blue diamonds (Rodriguez and Martinez-
Pinedo, 2010) and blue up-triangles (López Vaquero et al.,
2013)), and relativistic in light-blue down-triangles (Song
et al., 2017); IMSRG: IM-GCM in the light green 48Ca bar
(Yao et al., 2020), and valence space in green bars (Belley
et al., 2021); and CC theory: dark green 48Ca bar (Novario
et al., 2021).

82Se NMEs are also smaller than in other calculations,
but currently the ab initio description of these nuclei is
of lower quality than for 48Ca, see Sec. IV.E.

Overall, the smaller ab initio NMEs suggest that phe-
nomenological NMEs might be overestimated. This is
consistent with the fact that, as discussed in the follow-
ing sections, the many-body methods predicting larger
NMEs, energy-density functional theory and the IBM,
do not include explicitly proton-neutron pairing correla-
tions which are known to reduce the value of the NMEs.
Further, especially for 48Ca and 76Ge ab initio results are
not far from shell-model and some of the QRPA ones, the
only two-body methods which so far have predicted 2⌫��
or 2⌫ECEC half-lives before their measurement (see Sec.
IV.D.3). Nonetheless, especially compared to concerns
related to a dramatic reduction of NMEs due to “g

A

quenching” (see Sec. IV.D), the overestimation of the
more phenomenological NMEs appears relatively moder-
ate, taking into account that the ab initio methods used
for 48Ca reproduce well �-decay matrix elements without
any adjustments.
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NME from experiments

• Are there any observables which 
can be related to the NMEs? 

• Early attempts are to relate the 
Fermi NME with double Fermi 
transition or coulomb excitations 

•
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form M0ν = ⟨0f |Ŵ 0ν |0i⟩ of the m.e. of a two-body scalar
operator Ŵ 0ν between the parent and daughter ground states
|0i⟩ and |0f ⟩, respectively.1 The total 0νββ-decay operator
Ŵ 0ν ≡ g2

AŴ 0ν
GT − g2

V Ŵ 0ν
F is the sum of the Gamow-Teller and

Fermi transition operators [7]:

Ŵ 0ν =
∑

ab

Pν(rab)
(
g2

Aσ a · σ b − g2
V

)
τ−
a τ−

b . (1)

Here, the vector and axial vector coupling constants are
gV = 1 and gA = 1.25, respectively, and Pν(rab ≡ |r⃗a − r⃗b|)
is the neutrino potential which in the simplest Coulomb
approximation is just reciprocal of the distance between the
nucleons: Pν(rab) = 1

rab
(for the sake of simplicity we have

taken out the nuclear radius R from the usual definition of
Pν [7]). In this approximation

Ŵ 0ν
F =

∑

ab

Pν(rab)τ−
a τ−

b = 1
e2

[T̂ −, [T̂ −, V̂C]], (2)

where T̂ − =
∑

a τ−
a is the isospin lowering operator, and V̂C =

e2

8

∑
a ̸=b

(1−τ
(3)
a )(1−τ

(3)
b )

rab
is the operator of Coulomb interaction

between protons. Actually, only the isotensor component

of the Coulomb interaction V̂ t
C = e2

8

∑
a ̸=b

T
(2)
ab

rab
, with T

(2)
ab ≡

τ (3)
a τ

(3)
b − τ aτ b

3 , survives in the double commutator (2). This
isotensor Coulomb interaction does contribute to the mean
Coulomb field in the nucleus, but it is easy to see that
any mean-field single-particle operator drops out of the
double commutator (2). Thus, the expression (2) is essentially
determined by the residual (after separating out the mean-field
contribution) two-body isotensor Coulomb interaction.

The total nonrelativistic nuclear Hamiltonian Ĥtot consists
of the total kinetic energy of nucleons and the strong and
Coulomb two-body interactions between them: Ĥtot = T̂ +
Ĥstr + V̂C . Assuming Ĥstr to be exactly isospin-symmetric
[T̂ −, Ĥstr] = 0 (we shall quantify later the accuracy of this
assertion but it is well known that the isospin-breaking terms
in Ĥstr are in fact fairly small [15,16]), one has

Ŵ 0ν
F = 1

e2
[T̂ −, [T̂ −, Ĥtot]], (3)

and, correspondingly [17],

M0ν
F = − 2

e2

∑

s

ω̄s⟨0f |T̂ −|0+
s ⟩⟨0+

s |T̂ −|0i⟩. (4)

Here, the sum runs over all 0+ states of the intermediate
(N − 1, Z + 1) isobaric nucleus, ω̄s = Es − (E0i

+ E0f
)/2

represents the excitation energy of the sth intermediate 0+ state
relative to the mean energy of the ground states of the initial
and final nuclei. To account for the isospin-breaking part of
Ĥstr, δM0ν

F = 1
e2 ⟨0f |[T̂ −, [T̂ −, Ĥstr]]|0i⟩ should be subtracted

from the right-hand side (r.h.s.) of Eq. (4).

1Using closure of the states of the intermediate nucleus A
Z+1ElN−1

which are virtually excited in ββ decay would be an exact procedure
if there were no energy dependence in the 0νββ transition operator. A
weak energy dependence of the operator leads in reality to a “beyond-
closure” correction to the total M0ν of less than 10%.

Among all the intermediate 0+ states, the isobaric analog
state (IAS) dominates the sum (4). In fact, ⟨IAS|T̂ −|0i⟩ ≈√

N − Z is the largest first-leg transition m.e. [a few percent
of the total Fermi strength N − Z may go to the highly-
excited isovector monopole resonance (IVMR) since the
IAS and IVMR get mixed mainly by the Coulomb mean
field]. Similarly, the second-leg Fermi transition dominantly
populates the double IAS (DIAS) in the final nucleus. Due to
the isotensor part of the Coulomb interaction [which also gives
the only contribution to the double commutator (2)], the final
g.s. gets an admixture of the DIAS where the corresponding

mixing m.e. is ⟨0f |DIAS⟩ = −⟨0f |V̂ t
C |DIAS⟩

EDIAS
, with EDIAS ≈

2ω̄IAS. Thereby, one gets ⟨0f |T̂ −|IAS⟩ ̸= 0.
Other quantitative arguments for the dominance of the IAS

in the sum (4) follow from the representation of the double
commutator:

[
T̂ −,

[
T̂ −, V̂ t

C

]]
= V̂ t

C(T̂ −)2 + (T̂ −)2V̂ t
C − 2T̂ −V̂ t

CT̂ −.

It is clear that the first term V t
C(T −)2 dominates the m.e.

⟨0f |[T̂ −, [T̂ −, V̂ t
C]]|0i⟩, since the other m.e., because of

T̂ +|0f ⟩ ≈ 0 (with a small deviation from zero originating
from an isospin symmetry violation effect, caused mainly
by the Coulomb mean field), contain additional suppres-
sion as compared with the leading term ⟨0f |V̂ t

C(T̂ −)2|0i⟩ =
⟨0f |V̂ t

C |DIAS⟩⟨DIAS|(T̂ −)2|0i⟩.
Thus, M0ν

F is determined by the amplitude of the dou-
ble Fermi transition via the IAS in the intermediate nu-
cleus into the ground state of the final nucleus where
the second Fermi transition amplitude is due to an ad-
mixture of the DIAS in the final nucleus to the ground
state of the parent nucleus: ⟨0f |T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩ =
⟨0f |DIAS⟩⟨DIAS|T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩. Finally, one can
write

M0ν
F ≈ − 2

e2
ω̄IAS⟨0f |T̂ −|IAS⟩⟨IAS|T̂ −|0i⟩. (5)

Therefore, the total M0ν
F can be reconstructed according

to Eq. (5), if one is able to measure the &T = 2 isospin-
forbidden m.e. ⟨0f |T̂ −|IAS⟩, for instance in charge-exchange
reactions of the (n, p)-type (also the same m.e. determines
M2ν

F , but it would be much more difficult to extract it). Using
the QRPA calculation results for M0ν

F [10,11], this m.e. can
roughly be estimated as ⟨0f |T̂ −|IAS⟩ ∼ 0.005, i.e., about a
thousand times smaller than the first-leg m.e. ⟨IAS|T̂ −|0i⟩ ≈√

N − Z. This strong suppression of ⟨0f |T̂ −|IAS⟩ reflects the
smallness of the isospin violation in nuclei. The IAS has been
observed as a prominent and extremely narrow resonance and
its various features have well been studied by means of (p,n),
(3He,t) and other charge-exchange reactions, see, e.g., [18].
This gives us hope that a measurement of ⟨0f |T̂ −|IAS⟩ in
the (n,p) charge-exchange channel might be possible. More
generally, a measurement by whichever experimental mean of
the &T = 2 admixture of the DIAS in the final ground state
would be enough to determine M0ν

F .
A qualitative analysis of the physics involved in calculations

of M0ν
F can be conducted further. One can define an operator

V̂ t
C = e2

8R̄

∑
ab T

(2)
ab which is obtained by the substitution of 1

rab

041302-2



NME from experiments

• The idea of EM transitions from DIAS to ground states 
has been formulated with shell model recently
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FIG. 1. Correlation between 0⌫�� (M0⌫��) and double-
magnetic dipole [M��(M1M1)] NMEs. In the y-axis , ↵ is an
isospin factor, see the text. Top panel: Results for 46�58Ti,
50�58Cr and 54�60Fe obtained with the KB3G (circles) and
GXPF1B (diamonds) e↵ective interactions. Bottom panel:
Results for 72�76Zn, 74�80Ge, 76�82Se, 82,84Kr obtained with
GCN2850 (circles), JUN45 (diamonds) and JJ4BB (trian-
gles); and for 124�132Te, 128�134Xe and 134,136Ba calculated
with the GCN5082 (circles) and QX (diamonds) interactions.

lower panel covers twenty five nuclei comprising zinc, ger-
manium, selenium, krypton, tellurium, xenon and bar-
ium isotopes with 72  A  136. The correlation is
independent on the nuclear interaction used.

Second-order EM decays are naturally suppressed with
respect to first-order ones. Nevertheless, �� transitions
have been measured between 0+ first-excited states and
GSs, where single-� decay is forbidden [51–53], and, re-
cently, among general nuclear states in competition with
� transitions [54, 55]. Future DIAS to GS �� decay mea-
surements, combined with the good linear correlation be-
tween NMEs presented in this work, show as a promising
tool to give insights on 0⌫�� NMEs.

Electromagnetic DIAS to GS transitions. The �� de-
cay of a nuclear excited state is an EM process where two
photons are emitted simultaneously:

Ni(pi) �! Nf (pf ) + ��(k) + ��0(k0) , (1)

where Ni, Nf are the initial and final nuclear states with
four-momenta pi and pf , respectively, and photons have

four-momenta k, k0 and helicities �,�0.
The theoretical framework of nuclear two-photon de-

cay is presented in detail in Refs. [52, 56, 57]. The non-
relativistic interaction Hamiltonian is given by

ĤI =

Z
d4x Ĵµ(x)A

µ(x) (2)

+
1

2

Z
d4x d4y B̂µ⌫(x, y)A

µ(x)A⌫(y) ,

where Aµ(x) denotes the EM field, Ĵµ(x) the nuclear cur-

rent, and B̂µ⌫(x, y) is a contact (seagull) operator which
represents intermediate nuclear-state excitations not cap-
tured by the nuclear model, such as nucleon-antinucleon
pairs. Perturbation theory up to second order in the pho-
ton field leads to the transition amplitudes

M(1) = �(k0 + k00 + Ef � Ei) (3)

⇥
X

n

Z
d3x d3y "⇤µ�(k)"

⇤
⌫�0(k0) e�i(k·x+k

0·y)

⇥
"
hf | Ĵµ(x) |ni hn| Ĵ⌫(y) |ii

Ei � k00 � En + i✏
+
hf | Ĵ⌫(y) |ni hn| Ĵµ(x) |ii

Ei � k0 � En + i✏

#
,

M(2) = �(2⇡)�(k0 + k00 + Ef � Ei) (4)

⇥
Z

d3x d3y "⇤µ�(k)"
⇤
⌫�0(k0)e�i(k·x+k

0·y) hf | B̂µ⌫(x,y) |ii ,

where "µ�(k) is the photon polarization vector. The ini-
tial (|ii), intermediate (|ni) and final (|fi) nuclear states
have energies Ei, En and Ef , respectively. The am-
plitude M(2) can be neglected for DIAS to GS transi-
tions, in the absence of subleading two-nucleon currents,
because it involves a one-nucleon operator in isospin
space [52].
It is very useful to perform a multipole decomposition

of the �� amplitude, because nuclear states have good
angular momentum. The expansion involves electric (E)
and magnetic (M) multipole operators with angular mo-
mentum L, denoted asX. The transition amplitude sums
over multipoles, which factorize into a geometrical (phase
space) factor and the generalized nuclear polarizability,
PJ , containing all the information on the nuclear struc-
ture and dynamics [52]:

PJ(X
0X; k0, k

0
0) = 2⇡(�1)Jf+Ji

p
(2L+ 1)(2L0 + 1) (5)

⇥
X

n,Jn

"(
L L0 J

Ji Jf Jn

)
hJf || eO(X)||JnihJn|| eO(X 0)||Jii

En � Ei + k00

+ (�1)Y
(
L0 L J

Ji Jf Jn

)
hJf || eO(X 0)||JnihJn|| eO(X)||Jii

En � Ei + k0

#
,

where the 6j-symbols depend on the total angular mo-
menta of the initial, intermediate, and final states Ji,
Jn, Jf and Y = J � L � L0. The reduced matrix ele-
ments of the EM multipole operators involve the photon

4

FIG. 3. Di↵erent contributions to the numerator NME M̂��

for several nuclei: total (T), spin M̂��
ss (ss), orbital M̂��

ll (ll)

and interference M̂��
ls (ls) terms.

when available—for E1. Using these experimental ener-
gies modifies M��(M1M1) results by less than 5%.

Results. With these ingredients we evaluate Eq. (10).
Figure 2 shows M��(M1M1) as a function of the exci-
tation energy of the intermediate states, for nuclei cov-
ering the three configuration spaces: 48Ti, 82Se and
128Te. The Lanczos strength function gives converged
results to ⇠ 1% after 50 � 100 iterations. Figure 2
illustrates that, in general, intermediate states up to
⇠ 15 MeV can contribute to the double-magnetic dipole
NME, and that only a few states dominate each tran-
sition. The comparison between weak and EM decays
needs to take into account that while 0⌫�� changes N
and Z by two units, they are conserved in �� decay.
This is achieved by comparing isospin-reduced NMEs or,
alternatively, by including the ratio of Clebsch-Gordan
coe�cients dictated by the Wigner-Eckart theorem [71]:

↵ =
q

3
2C

Tf ,2,Tf+2
Tf ,2,Tf+2/C

Tf ,2,Tf+2
Tf ,0, Tf

= 1
2

p
(2 + Tf )(3 + 2Tf ).

Figure 1 shows the good linear correlation between
0⌫�� NMEs and double-magnetic dipole NMEs obtained
with bare spin and orbital g-factors. We observe essen-
tially the same correlation when using e↵ective g-factors
that give slightly better agreement with experimental
magnetic dipole moments and transitions: gsi (e↵) =
0.9gsi , glp(e↵) = glp + 0.1, gln(e↵) = gln � 0.1 in the pf

shell [72]; and gsi (e↵) = 0.7gsi for pfg nuclei [73].
The slope of the linear correlation between �� and

0⌫�� NMEs in Fig. 1 depends mildly on the mass num-
ber, being larger in the pf shell than for pfg and sdgh

nuclei. This distinct behaviour is due to the energy de-
nominator in M��(M1M1): when only the numerator
in Eq. (10) is considered, M̂�� , the same linear correla-
tion is common to all nuclei. This is consistent with the
general behaviour illustrated by Fig. 2: the intermediate
states that contribute more to M��(M1M1) lie system-
atically at lower energies in pf -shell nuclei, compared to
A � 72 systems. In fact, the ratio of average energy of
the dominant states contributing to M��(M1M1) in the

ss
ll
ls
T
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-0.5
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FIG. 4. Decomposition of the 136Ba numerator NME M̂�� , in
terms of the two-nucleon angular momenta J : total (T), spin
M̂��

ss (ss), orbital M̂��
ll (ll) and interference M̂��

ls (ls) parts.

pf shell over the pfg�sdgh spaces matches very well the
ratio of the slopes in the top and bottom panels of Fig. 1.

We can gain additional insights on the ���0⌫�� corre-
lation by decomposing the double-magnetic dipole NME
into spin, orbital and interference parts. Since the en-
ergy denominator plays a relatively minor role, we fo-
cus on the changes in the numerator matrix element:
M̂�� = M̂��

ss + M̂��
ll + M̂��

ls . Figure 3 shows the de-
composition for the �� decay of several nuclei. In some
cases like 72Zn, the spin part dominates. Here, since M̂��

ss

is proportional to the double Gamow-Teller operator, a
very good correlation with 0⌫�� is expected [40]. In con-
trast, the orbital M̂��

ll part dominates in 134Xe or 136Ba,
sdgh nuclei with an l = 5 orbital. Remarkably, these
nuclei follow the common trend in Fig. 1, which means
that the correlation with 0⌫�� decay is not limited to
operators driven by the nuclear spin. The interference
M̂��

ls is generally smaller, and can be of di↵erent sign to
the dominant terms. In fact, Fig. 3 also shows that the
spin and orbital contributions to �� decay always have
the same sign, preventing a cancellation that would blur
the correlation with 0⌫�� decay.

Figure 4 investigates further the relation between spin
and orbital �� contributions, decomposing the NMEs in
terms of the two-body angular momenta J of the two
nucleons involved in the transition. Analogously to 0⌫��
NMEs [17, 18], M̂�� is dominated by the contribution
of J = 0 pairs, partially canceled by that of J > 0
ones. This behaviour is common to M̂��

ss and M̂��
ll , with

a more marked cancellation in the spin part, as expected
due to the spin-isospin SU(4) symmetry of the isovector
spin operator [22, 74]. The J = 0 dominance suggests
that spin and orbital S = L = 0 pairs are the most
relevant in �� DIAS to GS transitions, implying that
s1s2 = (S2�3/2)/2 < 0, and likewise l1l2 < 0. Since the
spin and orbital isovector g-factors also share sign, the



NME from experiments

• Above results has a similar nucleon pair structure as double 
beta decay 

• Two nucleon removal amplitude constrained with charge 
changing (p,t) reactions
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FIG. 2: (Color online) Contributions of the transforming neutron pair with different angular momenta Jπ to the total M0ν

calculated within the QRPA and different basis sizes for the 0νββ decay 82Se→82Kr. The left bar is calculated with the same
basis of four levels, 1p3/2, 0f5/2, 1p1/2 and 0g9/2, used in the shell model calculations. The Ikeda Sum Rule (ISR) is exhausted
by 50%. The second bar from the left includes in addition one, the 1f7/2 level, of the two missing spin-orbit partners given
for the 82Se nucleus in ref. [9] for the shell model. The ISR is exhausted by 66%. The third bar from the left includes both
missing spin-orbit partners 0f7/2 and 0g7/2 amounting in total to 6 single-particle levels. The ISR is fulfilled by 100%. This
leads to the increase in the neutrinoless matrix element from 1.12 to 4.07. The right bar represents the QRPA result with 9
single-particle levels (1f7/2, 2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2, 1g7/2.). The matrix element gets only slightly increased
to 4.27. The spin-orbit partners are essential to fulfill the Ikeda Sum Rule (ISR). In all four QRPA calculations the QRPA
“renormalisation” factor gpp (given in the figure) of the particle-particle strength of the Bonn CD nucleon-nucleon interaction
is adjusted to reproduce the experimental 2νββ decay rates.

of the RPA is approximately correct, since the ring diagrams give the most important ground state correlations. The
contributions of seniority 6 and 10 to M0ν are suppressed compared to the others (see figure 4).
Figures 2 and 3 show the QRPA contributions of different angular momenta of the neutron pairs, which are changed

in proton pairs with the same angular momenta. In figure 2 the left bar is the result for 82Se obtained with the
single-particle basis 1p3/2, 0f5/2, 1p1/2 and 0g9/2 used in the SM. The ISR is exhausted by 50%. The second bar from
the left represents the result with addition of the 1f7/2 level. The ISR is exhausted by 66%. The third bar from the
left shows the result obtained by inclusion of both spin-orbit partners 0f7/2 and 0g9/2 missing in the four level basis.
The ISR is 100% fulfilled. For the right bar the basis is increased to 9 single-particle levels for neutrons and protons
(0f7/2, 1p3/2, 0f5/2, 1p1/2, 0g9/2, 1d5/2, 2s1/2, 1d3/2, 0g7/2).
For 128Te in figure 3 the left bar is calculated with the same five single-particle levels, 0g7/2, 1d5/2, 2s1/2, 1d3/2

and 0h11/2, used in the shell model calculations. The middle bar represents the results by inclusion in addition the
missing spin-orbit partners 0g9/2 and 0h9/2, with 7 levels in total. The ISR is 100% fulfilled. This strongly increases
the 0νββ matrix element from 1.37 to 3.41. The right bar is the QRPA result with 13 single-particle levels including
all the states from the N = 3 (p, f) and the N = 4 (s, d, g) shells and the four additional levels 0h11/2, 0h9/2, 1f7/2
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Fig. 4. Left panel: Measured ground state 138Ba(p, t) cross sections overlayed with absolute values obtained from the shell model/Fresco calculations described in the text. 
Right panel: Running sum of experimental (p, t) cross sections at θlab = 5◦ , compared with the calculated values. The grey band represents the experimental uncertainties 
from Table 2. The orange band includes a 10% uncertainty due to multi-step contributions and an overly conservative spread arising from the use for different OMP parameters 
in the DWBA analysis. The latter dominates the total uncertainty.

Fig. 5. Left panel: Measured ground state 138Ba(p, t) cross sections overlayed with absolute values obtained from shell model/Fresco calculations that incorporated core-
polarization corrections as described in the text. Right panel: Running sum of experimental (p, t) cross sections at θlab = 5◦ , compared with calculated values obtained after 
core-polarization effects are taken into account. The uncertainty bands are the same as described in the caption for Fig. 4.

states are also found to agree reasonably well with experiment, 
particularly for the GCN50:82 Hamiltonian. This agreement did not 
significantly improve on making small adjustments of the single-
particle energies and pairing strengths of the Hamiltonians.

In the final part of our analysis we used these results to bench-
mark NME calculations for 136Xe 0νββ decay. This was based on 
the arguments presented in Ref. [71], where it was shown that 
the 0νββ decay NME for a parent nucleus with mass number A
can be expanded as a sum over states in an intermediate nucleus 
with mass number (A −2). For the case of 136Xe, one can similarly 
evaluate the NME by summing over the products of the TNA for 
two-neutron removal to 134Xe, the TNA for two-proton addition to 
136Ba, and the two-body matrix element for the double-beta decay 
operators (cf. Eq. (9) in Ref. [71]). The most significant contribu-
tion to the NME is through the 0+ ground state in the 134Xe, while 
J > 0 intermediate states mainly cancel the $ J = 0 term [71]. This 
is similar to other calculations [35,72] that separate the NME in 
terms of nucleon pairs coupled to angular momentum and parity 
Jπ = 0+ and Jπ ≠ 0+ , where the J > 0 contributions predomi-
nantly cancel the leading Jπ = 0+ term (see Fig. 1 in Ref. [35]).

The 136Xe → 134Xe transition described above is expected to 
be very similar to 138Ba → 136Ba. This is because both 136Xe and 
138Ba are singly closed shell, nearly spherical nuclei at N = 82. Fur-
thermore, theory calculations predict the 134Xe and 136Ba ground 
states to have similar structure [40]. This is supported by strong 
empirical evidence. If we examine the low-lying levels in these 

nuclei, their 2+
1 states have very similar excitation energies and 

B(E2; ↑) values [73]. Additional comparison, after including recent 
results from (n, n′γ ) experimental work [74], shows that the ener-
gies of the 2+

2 , 2+
3 , 0+

2 , 4+
1 , 4+

2 and 7−
1 states are also very similar 

in both nuclei. Therefore, the low-lying level schemes in 134Xe 
and 136Ba are nearly identical. This similarity allows a benchmark-
ing of 136Xe 0νββ decay NME calculations using our 138Ba(p, t)
data. As described below, on the basis of this benchmarking we 
can evaluate a revised value for the dominant Jπ = 0+ Gamow-
Teller (GT) component of the NME. This is done by first calculating 
the NME through the Jπ = 0+ ground state in 134Xe, both with 
and without the core-polarization corrections to the TNA. For the 
former we chose expanded sets of TNA, for both (neutron re-
moval and proton addition) parts of the calculation, with the 2n
removal part being the one that better reproduces our measured 
138Ba(p, t) cross section. The ratio of the results was determined 
to be R = 1.58, which is the expected enhancement in the NME 
due to core-polarization. Next we performed a more rigorous five-
orbital valence space ISM calculation of the NME (for light neutrino 
exchange) with the sn100t Hamiltonian, as in Ref. [12]. On using 
the CD-Bonn potential [75] for two-nucleon short range correla-
tions (SRC) and further including higher-order contributions (HOC) 
due to induced nucleon currents [76], we determine the matrix el-
ement to be M0ν

GT ( Jπ = 0+) = 5.67. Finally, on incorporating the 
above enhancement due to core-polarization effects, we revise the 
NME to M0ν

GT ( Jπ = 0+) = R × 5.67 = 8.96.
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NME from experiments

• Recently, the measurement of DGT for determinations of 
double beta decay matrix elements are proposed 

• What they found in shell model calculations, 
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interactions have been tested in nuclear spectroscopic
studies and reproduce experimental two-neutrino ββ decay
matrix elements and GT strengths to low-lying states with a
renormalization of the στ operator [22,66–68]. Figure 4
shows a simple linear relation between the DGT and 0νββ
decay matrix elements, valid up to M0ν ≃ 5. When taking
nuclear states truncated in the seniority basis (using the
code NATHAN [48]), the same linear relation extends to
M0ν ≃ 10. The correlation is also common to calculations
in one or two major shells for results in Fig. 4(a).
Furthermore, Fig. 4 compares the shell model results with

the nonrelativistic energy-density functional (EDF) ones for
ββ decay emitters and cadmium isotopes from Ref. [24]. The
two many-body approaches follow a quite similar correla-
tion. This is very encouraging given the marked differences
between the shell model and EDF M0ν values [70]. On the
contrary, the quasiparticle random-phase approximation
(QRPA) calculations for ββ decay emitters from Ref. [69]
give smallMDGT ≲ 0.4matrix elements independently of the
associated 0νββ decay NME values.

In order to understand the connection between the two
processes, Fig. 5(a) shows the matrix element distributions
as a function of the distance between the transferred or
decaying nucleons [71]. 136Xe is chosen as an example.
Both matrix elements are dominated by short internucleon
distances. In the case of DGT transitions this is because
the intermediate- and long-range contributions cancel to a
good extent. Radial distributions in the other DGT matrix
elements we have studied can be somewhat different, but
the approximate cancellation between intermediate and
long internucleon distances is systematically observed.
By contrast, Fig. 5(b) shows that the momentum transfers
are quite different, vanishing for DGT transitions and
peaking around 100 MeV in 0νββ decay.
The short-range character of both DGT and 0νββ decay

matrix elements can explain the simple linear relation
between them. References [72,73] showed that if an
operator only probes the short-range physics of low-
energy states, the corresponding matrix elements factorize
into a universal operator-dependent constant times a state-
dependent number common to all short-range operators.
A linear relation between the DGT and 0νββ decay matrix
elements follows. Our correlation depends moderately on
the mass region probably because of the approximate
cancellation of intermediate- and long-range contributions
in the DGT matrix elements. This explanation is consistent
with the different pattern of the QRPA results, as QRPA
DGT transitions do not show any cancellation between
intermediate and long internucleon distances [69], contrary
to the shell model.
Another difference between shell model and QRPA

DGT matrix elements appears when Eq. (6) is evaluated
introducing a complete set of intermediate states. While in
the QRPA intermediate 1þ states up to 15 MeV can be
relevant [69], typically canceling low-energy contributions,
in the shell model the impact of 1þ states beyond 8 MeV is
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FIG. 4. Correlation between the 0νββ decay NME M0ν and the
DGT matrix element MDGT. (a) Calcium (red), titanium (blue),
and chromium (yellow) isotopes calculated with the shell model
GXPF1B (squares) and KB3G (circles) interactions, compared to
the EDF 48Ca result [24] (green star). (b) Germanium (red),
selenium (blue), tin (orange), tellurium (purple), and xenon (light
blue) shell model results (filled symbols) calculated with the
interactions inRefs. [46,63–65], eachone representedby a different
symbol. Compared are EDF [24] (green stars) and QRPA [69]
(black crosses) results for ββ emitters and cadmium EDF values.
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interactions have been tested in nuclear spectroscopic
studies and reproduce experimental two-neutrino ββ decay
matrix elements and GT strengths to low-lying states with a
renormalization of the στ operator [22,66–68]. Figure 4
shows a simple linear relation between the DGT and 0νββ
decay matrix elements, valid up to M0ν ≃ 5. When taking
nuclear states truncated in the seniority basis (using the
code NATHAN [48]), the same linear relation extends to
M0ν ≃ 10. The correlation is also common to calculations
in one or two major shells for results in Fig. 4(a).
Furthermore, Fig. 4 compares the shell model results with

the nonrelativistic energy-density functional (EDF) ones for
ββ decay emitters and cadmium isotopes from Ref. [24]. The
two many-body approaches follow a quite similar correla-
tion. This is very encouraging given the marked differences
between the shell model and EDF M0ν values [70]. On the
contrary, the quasiparticle random-phase approximation
(QRPA) calculations for ββ decay emitters from Ref. [69]
give smallMDGT ≲ 0.4matrix elements independently of the
associated 0νββ decay NME values.

In order to understand the connection between the two
processes, Fig. 5(a) shows the matrix element distributions
as a function of the distance between the transferred or
decaying nucleons [71]. 136Xe is chosen as an example.
Both matrix elements are dominated by short internucleon
distances. In the case of DGT transitions this is because
the intermediate- and long-range contributions cancel to a
good extent. Radial distributions in the other DGT matrix
elements we have studied can be somewhat different, but
the approximate cancellation between intermediate and
long internucleon distances is systematically observed.
By contrast, Fig. 5(b) shows that the momentum transfers
are quite different, vanishing for DGT transitions and
peaking around 100 MeV in 0νββ decay.
The short-range character of both DGT and 0νββ decay

matrix elements can explain the simple linear relation
between them. References [72,73] showed that if an
operator only probes the short-range physics of low-
energy states, the corresponding matrix elements factorize
into a universal operator-dependent constant times a state-
dependent number common to all short-range operators.
A linear relation between the DGT and 0νββ decay matrix
elements follows. Our correlation depends moderately on
the mass region probably because of the approximate
cancellation of intermediate- and long-range contributions
in the DGT matrix elements. This explanation is consistent
with the different pattern of the QRPA results, as QRPA
DGT transitions do not show any cancellation between
intermediate and long internucleon distances [69], contrary
to the shell model.
Another difference between shell model and QRPA

DGT matrix elements appears when Eq. (6) is evaluated
introducing a complete set of intermediate states. While in
the QRPA intermediate 1þ states up to 15 MeV can be
relevant [69], typically canceling low-energy contributions,
in the shell model the impact of 1þ states beyond 8 MeV is
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FIG. 4. Correlation between the 0νββ decay NME M0ν and the
DGT matrix element MDGT. (a) Calcium (red), titanium (blue),
and chromium (yellow) isotopes calculated with the shell model
GXPF1B (squares) and KB3G (circles) interactions, compared to
the EDF 48Ca result [24] (green star). (b) Germanium (red),
selenium (blue), tin (orange), tellurium (purple), and xenon (light
blue) shell model results (filled symbols) calculated with the
interactions inRefs. [46,63–65], eachone representedby a different
symbol. Compared are EDF [24] (green stars) and QRPA [69]
(black crosses) results for ββ emitters and cadmium EDF values.
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NME from experiments

• Some claim a strong correlation between DGT or 2νββ 
and 0νββ, while others doubt

�36
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FIG. 5. Correlation between the NMEs of DGT transitions (MDGT) with those of GT-0νββ decay (M0νββ
GT ) or the full NMEs of 0νββ

decay (M0νββ
Tot ), scaled by a mass-number-dependent factor of either A−1/6 or A−1/3, respectively. The NMEs are obtained from ab initio

calculations with the chiral NN+3N interactions EM1.8/2.0 or #N2LOgo for isotopes ranging from A = 6 to A = 76. Only the results
obtained with EM1.8/2.0 are used in the linear regression with residuals given in the bottom row. The shaded area indicates the confidence
interval with a 95% confidence level while the dashed line indicates the prediction interval at a 95% confidence level. See text for
details.

FIG. 6. Correlation between MDGT and M0νββ
GT A−1/3 when con-

sidering only isospin-changing transitions (left column) or only
isospin-conserving transitions (right column). The green bands show
the 95% confidence interval while the dashed lines show the 95%
prediction interval. The best fit lines from both cases agree with each
other within 1σ .

Figures 7 and 8 summarize the results from the calcu-
lations of both ab initio and conventional nuclear models
(shell models [45,50,51], energy-density-functional (EDF)
[82] and QRPA [57]). Treating the matrix elements of isospin-
conserving and isospin-changing processes, separately, we

FIG. 7. Correlation between MDGT and M0νββ
Tot A−1/3 derived from

the results of both ab initio (red) and conventional (blue) nuclear
models [45,50,51,57,82], except for the results of QRPA calculations
[57] for isospin-conserving transitions in (a) and isospin-changing in
(b).
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FIG. 5. 0νββ- vs 2νββ-decay NMEs and linear fits with 68%
CL prediction bands for the shell model (NSM, circles) and pnQRPA
(diamonds, for all gT =0

pp values in Fig. 2). For 0νββ decay, results
include two-body currents and short-range NMEs.

constitute on average 51% of the total NME, we find good
correlations with r > 0.70, and for 3−, which gives ≈7.5% of
the NME, the coefficient is still r = 0.65. Only the 0+ part
does not seem to be correlated with M2ν , yet its contribution
to M0ν is negligible. Hence, in the pnQRPA, M2ν is not only
correlated with M0ν but also with its most important multipole
components. This could also explain why in other many-body
methods DGT NMEs are correlated with M0ν , even if the
former only receive contributions from 1+ intermediate states
just like M2ν .

VI. TWO-BODY CURRENTS AND SHORT-RANGE
0νββ-DECAY NME

The effects of two-body currents on 0νββ-decay NMEs are
similar in the shell model and the pnQRPA: NMEs decrease
by 25%–45%. The range is mainly driven by the uncertain-
ties in δa and δP

a . This reduction is somewhat larger than
that in earlier studies [31,99] that neglect pion-pole diagrams
[100]. In contrast to Ref. [31], the effect of two-body currents
with these additional contributions is fairly constant at p ≈
100–250 MeV, relevant for 0νββ decay (see Fig. 1). Since
two-body currents impact all nuclei rather uniformly, we also
find a good linear correlation between 2νββ- and 0νββ-decay
NMEs in this case. Table II presents the parameters of all
NME correlations, where 46 ! A ! 60 nuclei are denoted by
p f , 72 ! A ! 84 isotopes by p f g, and 124 ! A ! 136 nuclei
by sdg. In particular, Table II shows that the correlation coeffi-
cients remain practically unchanged when two-body currents
are included.

Finally, we add the short-range operator into 0νββ-decay
NMEs. In the pnQRPA, this term typically amounts to some
30%–80% of the one-body M0ν

L value, and in the shell model
this fraction is about 15%–50%. Individual uncertainties are
now larger, dominated by the short-range coupling gNN

ν .
Figure 5 shows the corresponding correlations between the
2νββ- and 0νββ-decay NMEs, with symbols denoting central
NME values. The pnQRPA results include all gT =0

pp values
shown in Fig. 2. Here the correlation coefficients become

r = 0.80 in the pnQRPA and 0.81 ! r ! 0.97 in the shell
model (see Table II), smaller than in previous cases because
the short-range term has Fermi spin structure, which does
not contribute to 2νββ decay. Figure 5 also highlights that
the slope of the pnQRPA correlation is similar to that of the
shell-model one for 76Ge, and not very different from the one
for 136Xe—note that Fig. 5 does not show pnQRPA results for
nuclei as light as 48Ca. However, since the pnQRPA generally
predicts larger M0ν values than the shell model, its correlation
is shifted to the right.

Figures 6 (for the pnQRPA) and 7 (for the nuclear shell
model) show the different correlations we obtain between the
2νββ- and 0νββ-decay NMEs in terms of which components
of the 0νββ-decay NMEs we consider. For the sake of a
better comparison, panels (a) in Figs. 6 and 7 show the same
correlations in Fig. 2. Since adding the effective two-body
currents results in relative reduction of 0νββ-decay NMEs
by some 25%–45% for both many-body methods, the corre-
lations in panels (b) in Figs. 6 and 7 are shifted towards the
negative x axis and the slopes increase. On the other hand,
since the short-range NMEs enhance the 0νββ-decay NMEs,
adding this contribution to the 0νββ-decay NMEs shifts the
correlations in panels (c) in Figs. 6 and 7 towards the positive
x axis and decreases the slopes. Hence the two effects tend
to balance each other, and once both two-body currents and
the short-range 0νββ-decay NME are added in panels (d) in
Figs. 6 and 7, the correlations resemble those obtained with
M0ν

L (1b) only. Table II clearly highlights that the effects of
two-body currents and the short-range NME partially cancel,
and the best linear fits of the correlations of M2ν with M0ν

L (1b)
and M0ν

L (1b + 2b) + M0ν
S are relatively similar.

Figure 8 shows 0νββ-decay NMEs with two-body cur-
rents and short-range NMEs derived from the correlations
and 2νββ-decay data. Figure 8(a) shows that two-body cur-
rents reduce the NMEs (light bands correspond to the bands
in Fig. 3 for reference). In fact, especially pnQRPA but
also shell-model NMEs with two-body currents are notably
smaller than in previous works [31,99] (shown as dark bands)
mostly due to the more complete currents considered here.
The total error bars are wider than those in Fig. 3 because of
the uncertainties in δa and δP

a . Our shell-model M0ν
L (1b + 2b)

NMEs are in good agreement with ab initio results for 48Ca
[19–21] and 76Ge [21] within uncertainties, and for 82Se our
error bar is just above the ab initio value [21]. This suggests
that δa and δP

a effectively capture part of the missing many-
body correlations—note that ab initio 0νββ-decay NMEs do
not include two-body currents yet. Further, our shell-model
M0ν

L (1b + 2b) NMEs are consistent—with lower central val-
ues and larger uncertainties—with those of Ref. [101], which
follows a different approach for adding correlations into the
shell-model framework.

Figure 8(b) shows that when we include the short-range
operator, 0νββ-decay NMEs obtained from the correlation
and 2νββ-decay data become comparable with the standard
ones in Fig. 3 (again, light bands serve as a reference).
However, error bars become notably larger due to the siz-
able uncertainties especially in the short-range coupling gNN

ν ,
which are comparable to the uncertainties from the NME
correlation.
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Conclusion

• New formalism of double beta decay based on SMEFT 
frame has been proposed 

• But deviations are still presented 

• Deviations among traditional many-body approaches are 
large and we are trying to understand the reason 

• There are also efforts of constraining the NMEs from 
experiment side
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Outlook

• A more complete expression is needed for non-standard 
mechanisms 

• With more powerful HPCs, we are confident that the 
calculations will be more precise 

• More measurements will help determine the NMEs
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