Millicharged particles from proton bremsstrahlung in the atmosphere

刘佐伟(南京大学物理学院)

与杜明轩和方润东合作 [2211.11469]

第二届地下和空间粒子物理与宇宙物理前沿问题研讨会 国科大杭高院基地(千岛湖两山高层次人才聚集区)

2023年5月8日

primary particle

1/

χ

χ

 ${\cal V}$

Millicharged particles

Proton bremsstrahlung

Earth attenuation

SuperK signal & limits

[Mingxuan Du, Rundong Fang, ZL, 2211.11469]

1) Millicharged particles

Millicharged particles

 $\mathscr{L} = e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi + m_{\chi} \bar{\chi} \chi$

 A_{μ} : photon

 χ : millicharged particles (MCPs)

 m_{χ} : mass

 ϵ : millicharge $\ll 1$

Millicharged particles from atmospheric collisions

millicharged partciles

$\mathscr{L} = e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$

only meson decay (MD)

Other BSM particles

[R. Plestid et al., arXiv:2002.11732][M. Kachelriess et al., arXiv:2104.06811][C. A. Arguelles et al., arXiv:2104.13924]

- see e.g.,
- [J. Alvey et al., arXiv:1905.05776]
- [L. Su et al., arXiv:2006.11837]

2 Proton bremsstrahlung

8	
---	--

primary particle

1/

χ

detector

X

Energy spectrum in the proton bremsstrahlung process

$$\frac{dN_{\chi}^{\text{PB}}}{dE_{\chi}} = \frac{\varepsilon^2 e^2}{6\pi^2} \int \frac{dk^2}{k^2} \sqrt{1 - \frac{4m_{\chi}^2}{k^2}} \left(1 + \frac{2k}{k}\right)$$

[see e.g. 1810.06856, 2111.15533]

proton-nitrogen xsec $\sigma_{pT} \simeq 253 \text{ mb}$

 k^2 = off-shell photon mass

 ϵ = millicharge

 E_+ = max & min E of MCPs

 $\frac{2m_{\chi}^{2}}{k^{2}} \int \int dE_{k} \frac{1}{\sigma_{pT}} \frac{d\sigma_{PB}}{dE_{k}} \frac{\Theta\left(E_{\chi}-E_{-}\right)\Theta\left(E_{+}-E_{\chi}\right)}{E_{+}-E_{-}}$ $p \longrightarrow k = (E_k, k)$ $\sum_{i} \epsilon^{i}_{\mu}(k) \epsilon^{i*}_{\nu}(k) = -g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^{2}},$

11

Splitting kernel

FWW (Fermi-Williams-Weizsacker) Relativistic & collider conditions

Our method to compute the splitting kernel

Our method to compute the splitting kernel

to $\sigma(p\bar{p} \to p\bar{p})$ at $s_{34} = (p_3 + p_4)^2$

xsec of $pN \rightarrow \gamma^*X$

Time-like form factor

	m_V (GeV)	Γ_V (GeV)	f_V
ρ	0.77	0.159	0.61
ω	0.77	0.0085	1.01
ρ'	1.25	0.3	0.22
ω'	1.25	0.3	-0.88
ho''	1.45	0.5	-0.33
ω''	1.45	0.5	0.36

Energy spectrum in proton bremsstrahlung (PB)

Proton energy spectrum

Proton energy spectrum at the top of the atmosphere

both power-law (PL) and actual data (PDG)

PL
$$\frac{d^2 \Phi_p}{dE_p d\Omega_p} (h_{\text{max}} = 65 \text{ km}) = \frac{0.74 \times 1.8 \times 10^4}{\text{m}^2 \text{ s sr GeV}} \left(\frac{E_p}{\text{GeV}}\right)^{-2.7}$$

Proton energy spectrum at height h via cascade equation

$$\frac{d}{dh} \left[\frac{d^2 \Phi_p}{dE_p d\Omega_p}(h) \right] = \sigma_{pT} n_T(h) \frac{d^2 \Phi_p}{dE_p d\Omega_p}(h)$$

 σ_{pT} = interaction xsec \simeq 253 mb

Atmospheric MCP flux in one-dimension approximation

$$\frac{d^2 \Phi_{\chi}^s}{dE_{\chi}^s d\Omega_{\chi}^s} = \iint dh dE_p \frac{d^2 \Phi_p(h)}{dE_p d\Omega_p} n_T(h) \sigma_p$$

 $\frac{d^2 \Phi_p(h)}{dE_p d\Omega_p} = \text{proton flux at height h}$

 $n_T(h) = \text{air density at height h (NRLMSISE-00)}$

 σ_{pT} = interaction xsec $\simeq 253$ mb dN_{χ}^{i} = MCP energy spectrum in channel *i* (PB or MD) dE_{χ}^{s}

MCP flux at Earth surface

 neglect air attenuation for MCP • isotropic (1D approximation)

4 Earth attenuation

Earth attenuation for MCP

X = slant depth traversed

adopt paras for muon in standard rock

a = 0.233 GeV/mwe

 $b = 4.64 \times 10^{-4} \,\mathrm{mwe^{-1}}$

$$e^2(a+bE)$$

[Comput. Phys. Commun. 184 (2013) 2070–2090]

 $mwe = 100 \text{ g/cm}^2$

MCP flux underground

Flux @ detector

 $\frac{d^2 \Phi_{\chi}^D(X)}{dE_{\chi} d\Omega} = e^{\varepsilon}$

$$X = \rho L = \rho \sqrt{\left(R_e - d\right)^2 + R_e^2 - 2\left(R_e - d\right)R_e \cos\left(\theta - \theta_s\right)}$$

$$E_{\chi}^{s} = \left(E_{\chi} + \frac{a}{b}\right) \exp\left(\varepsilon^{2}bX\right)$$

$$e^{2}bX \frac{d^{2}\Phi_{\chi}^{s}}{dE_{\chi}^{s}d\Omega^{s}}$$

[see e.g. Gaisser, Engel, Resconi (2016)]

5 SuperK signal & limits

MCP signal events at SuperK

- water-Cherenkov detector
- fiducial volume = 22.5 kton of water
- rock = 1000 m

[R. Plestid et al., arXiv:2002.11732]

[M. Kachelriess et al., arXiv:2104.06811]

[C. A. Arguelles et al., arXiv:2104.13924]

SuperK

Electron recoil in SuperK

 $\frac{d\sigma}{dE_r} = \varepsilon^2 \alpha^2 \pi \frac{E_r + 2E_\chi^2/E_r - 2E_\chi - m_e - m_\chi^2/m_e}{E_r m_e \left(E_\chi^2 - m_\chi^2\right)}$

 E_{χ} = MCP energy E_r = electron recoil energy

 e^{-}

SuperK data & statistics

[SK, 1111.5031]

SuperK limits on millicharged particles

- order-of-magnitude improvement on ϵ^2
- better than ArgoNeuT & MiniBooNE
- start to lose sensitivity above 0.4 GeV
- probe para space below 0.1 GeV

- We compute millicharged particles from the proton bremsstrahlung process in the atmosphere
- The light millicharged particle flux from the proton bremsstrahlung process is much larger than the previously studied meson decay process
- This leads to an order-of-magnitude improvement in the constraint on ϵ^2 (where ϵ is the millicharge), surpassing the current best experimental limits, such as ArgoNeuT and MiniBooNE, in the mass range of 0.1-0.4 GeV.

[Mingxuan Du, Rundong Fang, ZL, 2211.11469]

additional slides

splitting kernel in the CM frame

$$\frac{d^2 \mathscr{P}_{p \to \gamma^* p}}{dE_k^0 d\cos \theta_k^0} = \frac{1}{\sigma_{2 \to 2}(s_{34})} \frac{\int dE_3^0 \int d\phi_{3,k}^0 \left| \mathcal{M}_{2 \to 3} \right|^2}{512\pi^4 E_1^0 E_2^0 \left| \overrightarrow{v}_1^0 - \overrightarrow{v}_2^0 \right|},$$

- $\mathcal{M}_{2\to3}$ = the matrix element of the $p\bar{p} \to \gamma^* p\bar{p}$ process $\sigma_{2\to2}(s_{34})$ = the cross section of the $p\bar{p} \to p\bar{p}$ process E_3^0 = the energy of the final state proton $\phi_{3,k}^0$ = the azimuth angle of \vec{p}_3 in the transverse plane of $\vec{k}_{3,k}$

• θ_{l}^{0} = the angle between γ^{*} and the initial state proton

Atmospheric MCP flux in the MD process

The calculation for the MD process is the same as the PB process, except the energy spectrum of atmospheric MCPs in Eq. (1). For the MD process, one has

$$\frac{\mathrm{d}N_{\chi}^{\mathrm{MD}}}{\mathrm{d}E_{\chi}^{s}} = 2\sum_{m} \int_{1}^{\infty} \mathrm{d}\gamma_{m} \frac{dN_{m}(E_{p})}{d\gamma_{m}} F_{m}(E_{\chi}^{s},\gamma_{m}), \qquad (A_{m})$$

where *m* denotes the parent meson in the decay process, $\gamma_m = E_m/m_m$ is the meson boost factor, $dN_m(E_p)/d\gamma_m$ is the spectra of the averaged multiplicity of mesons, the factor 2 comes from the fact that two MCPs are produced in each meson decay, and $F_m(E_{\chi}^s, \gamma_m)$ is the MCP energy spectra in the lab frame, which is obtained by boosting the spectra in the rest frame of meson *m* to the lab frame. We use the EPOS model [78] in the CRMC package [79] to compute $dN_m(E_p)/d\gamma_m$.

The splitting kernel in the FWW approximation is given by [69, 83, 84]

$$\frac{d^2 \mathcal{P}_{p \to \gamma^* p}^{\text{FWW}}}{dE_k d \cos \theta_k} = \left| \mathbf{J}(z, p_T^2) \right| \frac{d^2 \mathcal{P}_{p \to \gamma^* p}^{\text{FWW}}}{dz dp_T^2} = \left| \mathbf{J}(z, p_T^2) \right| \left| F_V(k) \right|^2 \omega(z, p_T^2), \tag{B1}$$

where $k^{\mu} = (E_k, \vec{k})$ is the 4-momentum of the virtual photon, θ_k is the angle between the virtual photon and the initial proton, $p_T = |\vec{k}| \sin \theta_k$ is the transverse momentum, $z = \cos \theta_k |\vec{k}| / |\vec{p_p}|$ with $\vec{p_p}$ being the momentum of the initial proton, $|\mathbf{J}(z, p_T^2)|$ is the determinant of the Jacobian matrix between (z, p_T^2) and $(E_k, \cos \theta_k)$, and $\omega(z, p_T^2)$ is given by [69, 83, 84]

$$\omega\left(z, p_T^2\right) \simeq \frac{\alpha}{2\pi H} \left\{ \frac{1 + (1-z)^2}{z} - 2z(1-z) \left(\frac{2m_p^2 + k^2}{H} - z^2 \frac{2m_p^4}{H^2} \right) + 2z(1-z) \left(z + (1-z)^2\right) \frac{m_p^2 k^2}{H^2} + 2z(1-z)^2 \frac{k^4}{H^2} \right\},$$
(B2)

where $H = p_T^2 + (1-z)k^2 + z^2 m_p^2$. We note that the FWW approximation is valid in the relativistic and collinear three conditions for the FWW approximation (denoted as the "FWW cuts"):

1. $p_T < 0.1 E_k$ [69, 70],

2. $p_T < 1 \text{ GeV} [69, 70],$

3. $|q_{\min}^2| < \Lambda_{\text{QCD}}^2$ [72], where $|q_{\min}^2| \approx [p_T^2 + (1-z)k^2 - (1-z)k^2]$ is the QCD scale.

limit: $E_p, E_k, E_{p'} \gg m_p, \sqrt{k^2}, p_T$ [69–74, 83, 84]. Thus, in our analysis, we impose in the lab frame the following

$$+ z^2 m_p^2]^2 / \left[4E_p^2 z^2 (1-z)^2 \right] [83, 84] \text{ and } \Lambda_{\text{QCD}} \simeq 0.25 \text{ GeV}$$

Diff PB methods

Diff PB methods & diff CR proton spectra

Comparison with other papers in the MD process

[R. Plestid et al., arXiv:2002.11732]

[M. Kachelriess et al., arXiv:2104.06811]

[C. A. Arguelles et al., arXiv:2104.13924]

CR spectrum

PDG 2018

Other SuperK data sets

[SK, 1111.5031]

