Ζ

The LUX-ZEPLIN dark

matter experiment

Theresa Fruth On behalf of the LZ collaboration

Symposium on Frontiers of Underground Physics Chengdu, China 31st October 2023

LZ collaboration - 37 Institutions: more than 250 scientists, engineers, and technical staff

Black Hills State University Brookhaven National Laboratory Brown University Center for Underground Physics Edinburgh University Fermi National Accelerator Lab. Imperial College London King's College London Lawrence Berkeley National Lab. Lawrence Livermore National Lab. LIP Coimbra **Northwestern University Pennsylvania State University Royal Holloway University of London SLAC National Accelerator Lab.** South Dakota School of Mines & Tech South Dakota Science & Technology **Authority** STFC Rutherford Appleton Lab. **Texas A&M University University of Albany, SUNY University of Alabama University of Bristol University College London University of California Berkeley University of California Davis**

University of California Los Angeles

University of California Santa Barbara University of Liverpool University of Maryland University of Massachusetts, Amherst University of Michigan University of Oxford University of Rochester University of Sheffield University of Sydney **University of Texas at Austin University of Wisconsin, Madison** US UK Portugal Korea Australia

U.S. Department of Energy Office of Science

斑

Science and

Technology

Facilities Council

Thanks to our sponsors and participating institutes!

Overview

- Principal goal: the direct detection of dark
 matter via nuclear recoils
- Scintillation & charge (via electroluminescence) signals
- 3D event reconstruction

The LZ experiment, NIM A953 (2020)163047

Detector

TPC

- 494 TPC PMTs (R11410-22)
- PTFE field cage
- 4 HV grids to establish:
 - drift field
 - extraction region

The LZ experiment, NIM A953 (2020)163047

|Detector

Skin

- LXe between TPC & inner cryostat vessel
- Instrumented with 131 PMTs as veto detectors

181 Rt

Outer Detector

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs (R5912)

Circulation System

Sanford Underground Research Facility

Overview

Stable detector conditions:

- Temperature = 174.1 K
- Gas pressure = 1.791 bar
- Drift field = 193 V/cm
- Extraction field = 7.3 kV/cm (in gas)
- >97% PMTs operational

Continuous purification:

• 3.3 t/day through hot getter system

Engineering run

 Bias mitigation: analysis cuts developed on non-WIMP ROI background & calibration data

Electron lifetime 5-8 ms throughout

TPC Calibrations

Band fits performed with NEST v2.3.7 ¹

Photon detection efficiency: g1 = 0.114 + - 0.002 phd/photon

lonization channel gain: g2 = 47.1 +/- 1.1 phd/electron

99.9% discrimination of beta backgrounds under NR band median achieved

Background model

Backgrounds are modelled using energy deposit + detector response simulations ¹

Data selection cuts

events passing all cuts

- events outside of fiducial volume
- events vetoed by skin (mostly ¹²⁷Xe)

events vetoed by OD

Cuts developed using calibration data and sideband regions outside the WIMP ROI

Signal acceptance

PLR fits

Source	Expected Events	Fit Result	
β decays + Det. ER	215 ± 36	222 ± 16	Γ
$ u { m ER}$	27.1 ± 1.6	27.2 ± 1.6	
$^{127}\mathrm{Xe}$	9.2 ± 0.8	9.3 ± 0.8	
$^{124}\mathrm{Xe}$	5.0 ± 1.4	5.2 ± 1.4	
$^{136}\mathrm{Xe}$	15.1 ± 2.4	15.2 ± 2.4	
${}^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01	
Accidentals	1.2 ± 0.3	1.2 ± 0.3	
Subtotal	273 ± 36	280 ± 16	
³⁷ Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$	
Detector neutrons	$0.0^{+0.2}$	$0.0^{\pm 0.2}$	
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$	
Total	—	333 ± 17	
			F

keV_{ee} = Electron-equivalent reconstructed energy

Backgrounds within expectations ~25 counts/keV_{ee}/tonne/year

|First Science Run WIMP search

- Consistent with backgroundonly hypothesis
- Two-sided PLR
 EPJC 81, 907 (2021)
- Power constraint (-1σ)
 G. Cowan et al. <u>arxiv/1105.3166</u>

¹ P. Klos, J. Menéndez, D. Gazit, and A. Schwenk Phys. Rev. D 88, 083516 (2013) ² First dark matter search result from the LZ Experiment, Phys. Rev. Lett. **131**, 041002 (2023)

|First Science Run

WIMP search (spin-dependent)

Grey uncertainty band represents uncertainty on Xe form factor ¹

Searches in the low energy ER band

- Same SR1 data set as WIMP search
- Same cuts & background simulations
- Time dependence added to fit for ³⁷Ar and ¹²⁷Xe

Signal strengths scaled for ease of viewing on same plot

Searches in the low energy ER band

Solar axions

- Production in the sun
- Interaction in Xe via axio-electric effect

Neutrino magnetic moment

A non-zero neutrino magnetic moment or effective millicharge would increase the rate of solar neutrino ER interactions 19

Searches in the low energy ER band

Axion Like Particles (ALPs)

- Gauge pseudo-scalar boson from BSM global symmetry breaking
- Monoenergetic peak in ER spectrum

Hidden Photons (HPs)

- Gauge boson of new 'dark' U(1) symmetry
- Monoenergetic peak in ER spectrum

WIMP Search with Migdal Effect

Searching for WIMPs in ER band via Migdal effect

- Electronic excitation and ionization following nuclear recoil
- Sub-dominant to pure NR rate except near threshold

Outlook

What's next?

- There's much more data to come! Planning for a total 1000 live days (x 17 more exposure than SR1)
- More physics searches to look forward to, among them:
 - ⁸B solar neutrinos (S2-only)²
 - Neutrinoless double-beta decay searches with ¹³⁶Xe & ¹²⁴Xe ^{3,4}
 - High energy EFT searches
 - Ultraheavy/multiply interacting dark matter

¹LZ WIMP search sensitivity paper: <u>Phys. Rev. D 101, 052002 (2020)</u> ²LZ S2-only and Migdal sensitivity: <u>https://arxiv.org/abs/2101.08753 (2021)</u> ³LZ Xe136 0 ν ββ sensitivity: <u>Phys. Rev. C 102, 014602 (2020)</u> ⁴LZ Xe124 0 ν ββ sensitivity: <u>Phys. Rev. C 104, 065501 (2021)</u>

Next Generation

Towards the ultimate LXe observatory

- MOU between LZ, XENON, DARWIN
- Two in-person meetings
 - Karlsruhe 2022
 - UCLA 2023
- <u>https://xlzd.org/</u>
- White paper (2203.02309)

https://lz.lbl.gov/ @lzdarkmatter

- All LZ systems are performing well and backgrounds are within expectations
- Short engineering run has produced world-leading WIMP limits!
- Much more to come for LZ:
 - Ultimately planning for 1000 live-days
 - Many more physics searches
 - Beyond LZ: planning next generation detector with XLZD consortium

Backup

Neutron tagging

- Neutron capture on Gd produces gamma emission of up to 8.5 MeV
- Time delay between neutron scatter in LXe and capture is O(0.1-1 ms)
- Skin can detect proton recoil/Gd-capture gammas

Single -scatter neutron tagging efficiency: 89±3%

- OD neutron tagging settings
 - ≥ 200 keV
 - Δt ≤ 1200 μs
- Live-time hit: 5%

Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment, Phys. Rev. D 108, 012010 (2023)

|Backup

³⁷Ar

- ³⁷Ar is a significant background in early LZ data ($t_{1/2}$ = 35 d)
- Occurs naturally in atmosphere via e.g. Ca(n,α)Ar¹, but suppressed during Xe purification by charcoal chromatography
- Produced by cosmic spallation of natural xenon
- Estimating exposure during transport allows calculation of expected activity
 - We expect ~100 decays of ³⁷Ar in SR1 with a large uncertainty.²

Backup

Radon

- Naked ²¹⁴Pb β -decays are the **main** WIMP background
- Rn emanating from detector materials into TPC xenon
- Constrain β -decay rate with two methods:
 - \circ Rn-chain α tagging
 - Spectral fit of all internal BGs outside of energy ROI

²²² Rn (µBq/kg)	²¹⁴ Pb (µBq/kg)	²¹⁴ Po (µBq/kg)
4.37 ± 0.31 (stat)	3.26 ± 0.13(stat) ± 0.57(sys)	2.56 ± 0.21 (stat)

|Backup

Accidental coincidences

- Isolated S1s & S2s can accidentally combine to form WIMP ROI events
- Data quality cuts successfully developed to address this background
- To construct PDF, stitch isolated raw pulses together for fake events. Normalised using events with unphysical drift time (i.e. drift time > TPC height)
- Expect 1.2 ± 0.3 events in SR1

Accidental coincidence PDF

WIMP

this region are as expected with our signal acceptance model.

=> Deficit in WIMP search data appears consistent with under-fluctuation of background.