Exploring Solar Axions with Electronic Recoil Data from PandaX-4T Detector

Xinning Zeng, SJTU On behalf of the PandaX Collaboration 2024.05.10, COUSP2024@Xi Chang

Xinning Zeng, COUSP 2024

Dual Phase Xenon TPC

ZEPLIN · XENON · LUX · LZ · PandaX...

- 1. Large A: large cross section & self-shielding;
- 2. 3D reconstruction and fiducialization;
- 3. Scalable;

4. Discrimination power

- WIMPs, ν , n
- Axion, γ , β

Dark matter: nuclear recoil (NR)

→ Electronic Recoil(ER)

γ background: electron recoil (ER)

(S2/S1)_{NR}<<(S2/S1)_{ER}

Searching for Axions in Underground Experiments

- 1. Axion is a leading particle candidate to provide the mysterious dark matter in the cosmos;
 - cover a large mass range: $10^{-24} 10^7 eV$
- 2. Detection of axions in underground experiments:
 - enegy deposition: ~ keV;
 - upgraded detectors: background budget and energy resolution are improved significantly.

Solar Axion

Axion Formalism:

$$L \supset -rac{1}{4} \underline{g_{a\gamma\gamma}} a F_{\mu
u} ilde{F}^{\mu
u} - \sum_{f} i \underline{g_{af}} a ar{f} \gamma_5 f - i a ar{N} \gamma_5 (\underline{g_{aN}^0 + g_{aN}^3 au^3}) N$$

Production in the sun:

□ABC Process: Atomic recombination and deexcitation (ARD), Bremsstrahlung, and Compton;

□Primakoff effect;

□M1 nuclear transition of ⁵⁷Fe (14.4 keV).

Corresponding axion couplings in flux: $g_{ae} = 1 \times 10^{-11}$, $g_{a\gamma\gamma} = 1 \times 10^{-9} GeV^{-1}$, $g_{aN}^{eff} = 3 \times 10^{-6}$.

ER Signals from Axio-electric Effect

The approximate cross section of axio-electric effect is:

$$\sigma_{Ae}(E) = \sigma_{\rm pe}(E) \frac{g_{Ae}^2}{\beta} \frac{3E^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^2}{3}\right)$$

where $g_{Ae} = C_{ae}m_a/f_a$, C_{ae} is model dependent.

ER Signals from Inverse Primakoff Effect

Two kind of form factors:

(1) Screened Coulomb potential (SC):

$$F_{SC}(q;r_0) = rac{Z}{1+q^2r_0^2}$$

(2) Relative Hartree-Fock wavefunction (RHF):

$$F(q) \simeq \sum_{i=1}^{4} a_i \exp\left[-b_i (\frac{|\boldsymbol{q}|}{4\pi})^2\right] + c$$

Physics Letters B Volume 815, 10 April 2021, 136174

PandaX-4T Commissioning Run (Run 0)

□Sensitive volume: 3.7 tonne xenon

Commissioning started from Nov/2020 (95 days)

- 0.63 tonne-year exposure, 1058 candidates
- Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c2);

Tritium removal after Run 0

• xenon distillation, gas flushing, etc

Data Taking Condition of Run 1

- □2021/11 2022/05: ~1 ton-year (164 d) :
- □Xenon purity monitor: Maximum electron lifetime reaches 1800 us;
- □Liquid level is monitored through the drift time of gate events and single electron gain (SEG);

Updates on signal reconstruction

□Instant monitoring of PMTs:

• correction factor derived from single hit distribution.

□Instability of signal yield: S1 & S2 of monoenergetic peak evolve by time:

 correction factor derived from S1 and S2 with 5.5MeV alpha events from ²²²Rn decay;

New event window based on S2

• fix window: 1ms before and after

160

150

Rn Calibration & ER Response

□ The detector response is modelled by NEST (Noble Element Simulation Technique).

Detector parameters are fit to Rn calibration data using unbinned likelihood fitting with emcee;

□ Calibrated NEST also fits well with sliced calibration data.

arxiv: 2403.04239

Solar Axion Signals in PandaX-4T

With the calibrated signal model, we can simulate the spectrum of signals from solar axion:

1. couplings used in figure: $g_{ae} = 3.1 \times 10^{-12}$, $g_{aN}^{eff} = 8.3 \times 10^{-7}$;

2. Filled region for theoretical spectrum; solid and dashed line for Run 0 and Run 1;

NR Searches V.S. ER Searches

Main ER Backgrounds: ²²²Rn

- Rn level is monitored and varies with running conditions;
- Circulation system will be upgraded after Run 1.

Main ER Backgrounds: ⁸⁵Kr

- Compare to Commissioning run
 - tightening beta-gamma coincidence selection
 - less contributions from accidental events

Main ER Backgrounds: Tritium

- Tritium spectrum identified in the data
- Likely originated from a tritium calibration at the end of PandaX-II;
- Preliminary estimation of tritium level in Run 1

Dataset	Run0 Set4	Run0 Set5	Run1 Set1-4	Run1 Set5	Run1 Set6
Rate [/tonne/day]	3.24±0.20	1.88±0.15	0.25±0.05	0.23±0.05	0.23±0.03

Background Summary

Compare to WIMP analysis:

- 1. extended the ROI to 30 keV: better constraints on ER backgrounds;
- 2. reject events below ER 99.5%: remove neutron and surface backgrounds

Sensitivity Estimation

- 1. Binned Likelihood fitting based on HistFitter: CL_{s+b} technique, 90% C.L..
- 2. Independent estimation of different couplings:
 - (a) ABC axion: ABC Flux * σ_{Ae}
 - (b) ⁵⁷Fe axion: ⁵⁷Fe Flux * σ_{Ae}
 - (c) Primakoff axion: Primakoff Flux * σ_{invPri} (RHF is used.)
- 3. Sensitivity of g_{Ae} is improved by ~ 2 times compare to PandaX-II.
- 4. Final result is under consistency check.

Summary and Outlook

- Combined analysis of Run0 and Run1 are updated;
- > Low energy ER responses are calibrated with Rn calibration;
- Expected background contributions are estimated respectively; tritium level has significantly reduced in Run1;
- Sensitivity of solar axion detection is estimated and final results are under consistency check.

PandaX Collaboration

PandaX-4T Detector System Layout

Data Selection

Data Selection

Combined Analysis of Run0 + Run1

□New active time determination

• window-size of removal time depending on the charge of large signal in front

□New event window based on S2

• fix window: 1ms before and after

New event builder

 S1-S2 pairing requires quality of S1 in prior

□New selection criteria

charge-dependent cut threshold

removal time

0.04

0.02

500

1000

1500

2000

2500

event duration [us]

3000

24

$$F_{SC}(q;r_0) = \frac{Z[1 + (1 - \mathcal{N})q^2 r_0^2]}{1 + q^2 r_0^2}$$
(19)

 \mathcal{N} and r_0 are fitted to be: $\mathcal{N} = 0.54$, $r_0 = 3.13 \text{ Å}^{-1}$ (This notation is from paper, but it actually means 3.13^{-1}\AA . The result is also plotted on Figure 3). This form factor is found to be in good agreement with RHF for $|\mathbf{q}| \leq 5 \text{ Å}^{-1}$ ($E_a \leq 8 \text{ keV}$).

After Run 0

Tritium removal

• xenon distillation, gas flushing, etc

2021/11 – 2022/05: physics run (Run1)

• 164 days: ~ 1 tonne-year

2022/09 - 2023/10: hall construction

- xenon recuperation
- detector upgraded

Started at the end of 2023

Commissioning (Run 0)	Calibration	Distillation	Physics Run (Run 1)	Calibration	Detector Upgrade
2020/11/28 _ 2021/04/16	2021/04/17 _ 2021/06/09		2021/11/15 _ 2022/05/15	2022/05/16 _ 2022/07/08	

