

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会, 西昌, 2024

基于CLYC和机器学习 的快中子能谱测量研究

韩纪锋

hanjf@scu.edu.cn 四川大学原子核科学技术研究所(720)

2024.5.8

- 研究背景
- 中子、伽马甄别
- 快中子能谱探测
- 小结

• 中子伽马多模探测器

- ▶ 混合辐射场监测、辐射剂量与防护...
- ▶ CLYC晶体: CapeSym、北玻院
- > 高速波形采样

• 特点

- ▶ 热中子高效探测, 6Li富集度95%
- ▶ 良好能量分辨,~5%@662 keV
- ▶ 良好PSD能力
- ▶ 实现快中子探测,Cl、H

• 基于高速采样卡

- > TELEDYNE, ADQ12, 1Gsps
- ▶ 自制基于python的DAQ程序

• DAQ主要功能

- > 高速数据采集
- ▶ 实时ng甄别
- ▶ n、g计数率
- ▶ n、g能谱

▶ 符合

CLYC晶体的能量分辨

- 热中子相对宽度约1.8%
- 伽马能量分辨
 - > 4. 62%@662keV
 - ▶ 具有良好的线性0.06-3 MeV

耦合不同PMT

- 测试3个PMT
 - ▶ XP2020的分辨率最好
 - ▶ R580的能量分辨最好
 - ▶ R6231综合最好

PMT	Int_T /ns	Reso (%) @662keV	FOM
R580	6000	7. 90	2. 58
R6231	4000	5.03	2. 10
XP2020	6000	4. 62	1. 70

복

211

SICHUAN UNIVERSITY

CLYC晶体信号特征

• 3类典型信号

- 1. 超慢信号, us
- 2. 慢信号,百ns
- 3. 快信号, 10ns (PMT噪声)

• 中子

▶ 以T1(超慢信号)为主

• 伽马

- > 以T2(快信号)为主
- ▶ 约2%超慢信号干扰

Am-Be源结果

CLYC信号拟合

- 多指数拟合4种成分
 平均信号扣除噪声干扰
- 中子信号特征
 - ▶ 信号很宽
 - 上升沿较慢、下降沿很慢
 - ▶ 下降沿缺少10、43ns成分, n-g甄别依据
- 问题
 - > 拟合自由度大,结果不唯一
 - 月2000个脉冲的平均值进行 拟合,降低噪声
 - > 初值选择很重要

$$Y = -A_1 e^{-\frac{t}{\tau_1}} + A_2 e^{-\frac{t}{\tau_2}} + A_3 e^{-\frac{t}{\tau_3}} + A_4 e^{-\frac{t}{\tau_4}}$$

	Tau_1	Tau_2	Tau_3	Tau_4
Gamma	7.35	918	10.2	43
Neutron	17.8	3193	570	-

11

n-γ甄别

- CLYC晶体的PSD方法
 - ▶ n下降沿无10-43ns成分
 - > 用下降沿快速下降部分占比
 - ▶ 占比较小为n
 - ▷ 占比较大为 γ

结果

- ▶ 甄别优度FOM值2.3(>500keV)
- > CLYC晶体具有极好的n-γ 甄 别能力

$$FOM = \frac{|\mu_n - \mu_g|}{(\sigma_n + \sigma_n) * 2.355}$$

psd分母区间变化影响较小

基于CNN的堆积甄别-模拟信号

- 计数率较高,存在信号堆积
 - 全谱数据输入(归一化)
 - ▶ 6种信号类型: n, g, n+g, n+n, g+g, g+n

g

- 构建了2个网络
 - > 全连接网络FCNN,约400k参数
 - ▶ 卷积网络CNN,约4k参数
- 数据
 - ▶ 相同数据源
 - ▶ 训练集64%
 - ▶ 验证集16%
 - > 测试集20%

直接将不堆积脉冲 叠加生成堆积脉冲 标签容易获得

堆积脉冲甄别-结果

- 总体识别准确率
 - > FCNN网络: 98.7%; CNN网络: 99.2%
 - > 各类波形的误判率均小于5%
 - > CNN网络性能更好,参数更少,更适合
- 误判率
 - n+n、n+g误判率几乎0%;
 - n、g误判率小于1%;
 - g+n误判率2%;
 - g+g误判率3.6%;
- 误判原因
 - g、n幅度较小时,易被噪声 干扰

堆积脉冲实验数据

• 基于加速器单能中子源

- ▶ 中子能量1.5MeV, 产额约1E9
- ▶ 实现了堆积脉冲psd甄别
- ▶ 黑色:长堆积,>500ns
- ≻ 红色: 短堆积, ≤500ns

特征

▶ 基线无法回0,涨落提升约10倍

实现基于上升沿的寻峰算法、堆积脉冲ng甄别

堆积脉冲-能量和FOM值

- 提取单个脉冲的种类、能量
 - > 仅能利用一部分脉冲波形
 - > 热中子峰相对宽度为22%,差于未堆 积的2%
 - ▶ FOM值1.1,差于未堆积的2.0
 - ▶ 基线rms约12mV,远大于未堆积1mV
- 拓展CLYC至高计数率场景
 - > CLYC实测脉冲计数率3E6 cps
 - ▶ 实际粒子通量约1E8-1E9 cps

堆积脉冲甄别-ANN

- 监督学习
 - 标签:基于滤波寻峰算法结果
 - ▶ 训练FNN、CNN、ResNet网络
 - ▶ 残差网络(ResNet)准确率更好
- 结果
 - > 94.5%准确度
 - ▶ ResNet准确度更优
- 识别错误原因
 - > 脉冲幅度小、本底噪声大
 - 脉冲间距太短

對

SITY

×9

识别错误事例的进一步分析

- 对于2种算法预测不一致的脉冲
 - > 手工给出标签
 - > 约96%事例可通过人眼识别获得标签
 - ▶ 约4%事例无法给出标签
- 错误事例的识别
 - > ANN准确率60%
 - > 电荷积分法准确率30%
 - > 全部错误10%
 - ▶ 神经网络算法更准确

CLYC用于快中子探测

• 探测原理

- CLYC的⁶Li, ³⁵CI具有相对较大
 快中子反应截面
- Li6的热中子截面极大,存在很高的热中子峰(3.2MeVee), 该区域的快、热中子难以区分

CLYC快中子探测(En=1.4 MeV)

• 快中子峰

- ▶ 3.2MeV, 热中子
- > 1.8MeV, ${}^{35}CI(n, p){}^{35}S$
- ▶ 6.1MeV, 热中子叠峰
- ▶ FOM值约1.3

CLYC快中子探测(En=5.2 MeV)

 10^{3}

10²

10

Entries

2.8

- 观测到多个峰
 - ▶ 3.2MeV, 热中子
 - > 5.2MeV, ${}^{35}CI(n, p){}^{35}S$
 - > 6.9MeV, ⁶Li(n, t)⁴He
 - > 2.8MeV, ${}^{35}Cl(n,\alpha){}^{35}P*$
 - ➤ FOM值约1.4

3.2

5.2

6.9

CLYC快中子能谱探测

• Cl (n, p) S反应探测快中子

- > 线性良好,可用于快中子能谱探测
- > 能量分辨率约15%, 淬灭因子约0.9
- > 快中子FOM值稍差于热中子

▶ 在3MeV存在热中子干扰

核反应通道甄别

- 各核反应通道波形存在差异
 - ▹ Li6, ⁶Li(n, t)⁴He
 - ▷ CI35, ³⁵CI (n, p) ³⁵S
- 传统电荷积分法无法区分
 - ▶ FOM值约0.3
- 神经网络算法
 - ▶ 利用能量差异给出标签
 - ▶ 准确率97%
- 结论
 - > 通过ANN可有效识别核反应通道
 - ▶ 用C6LYC同时探测热中子和快中子

7.5

10.0

12.5

15.0

7.5

10.0

12.5

Nucl. Inst. Meth. A 1055 (2023) 168533

15.0

基于散裂白光源的多模探测

pd.eng.g

- CLYC进行白光测试
 - ▶ 中子伽马存在显著差异
 - > 伽马持续存在
 - 0-10MeV,可分辨反应通道, Li(n,α),Cl(n,p)
 - ▶ 10MeV以上能区复杂,中子能 量和沉积能量正相关。铅砖 慢化影响

基于散裂白光源的多模探测

■ 动态范围提升算法

- 采集卡动态范围有限
- 信号幅度差异很大
- 出现大量饱和信号

饱和信号的重建

- 拟合不饱和信号特征
- 根据饱和平台长度->
 实际峰位、峰值
- 补齐饱和信号
- 动态范围提升9倍

小结

- 研究了CLYC中子伽马多模探测器的性能
 - > 实现<mark>堆积脉冲</mark>的psd甄别和能量提取
 - > 实现快中子能谱探测, ³⁵Cl(n, p)³⁵S
 - > 用ANN网络实现核反应通道的甄别³⁵CI (n, p)³⁵S, ⁶Li (n, α)T
 - > C6LYC同时探测快中子、热中子、伽马

- 感谢基金委、科技部、四川省科技厅 、川大资助
- 感谢合作者(闪烁玻璃合作组)

➤ H-U几乎所有离子、单能中子
 > 离子辐照、离子束分析、核物理、
 中子、微束等终端

欢迎到川大原子核所(720) 访问、交流、工作! hanjf@scu.edu.cn

- ▶ 国内高校唯一中能回旋加速器
- ➢ 产生H(26MeV)、d(15MeV)和 a(30MeV)离子
- ▶ 同位素制备、 α 辐照等