

2024年5月7日-11日,四川西昌

EFT STUDIES OF NEUTRINOLESS DOUBLE BETA DECAY IN LR SYMMETRIC MODEL

DONG-LIANG FANG IMP, CAS

Outline

- * Matching to EFT
- * Derivation of reaction matrix
- * Many-body calculations
- * Conclusion and perspective

LR symmetric model

PHYSICAL REVIEW D

VOLUME 23, NUMBER 1

1 JANUARY 1981

Neutrino masses and mixings in gauge models with spontaneous parity violation

Rabindra N. Mohapatra* Department of Physics, The City College of the City University of New York, New York, New York 10031

Goran Senjanović Fermi National Accelerator Laboratory, Batavia, Illinois 60510 and Department of Physics, University of Maryland, College Park, Maryland 20742 (Received 8 August 1980)

- The LR symmetric SM is proposed by Mohapatra and Senjanovic
- One introduces the right-handed copies of neutrinos, gauge bosons as well as Higgs boson
- Besides a triplet Higgs boson has been introduced which gives rise of Majorana mass term of neutrino

Neutrinoless double beta decay Doi et al. PTPS83,1(1985)

- Neutrinoless double beta decay related terms
 - * Mass terms:

$$\nu_{eL} = \sum_{\substack{j=1\\3}}^{3} (U_{ej} \nu_{jL} + S_{ej} (N_{jR})^{C}),$$

$$\nu_{eR} = \sum_{j=1}^{3} (T_{ej}^{*} (\nu_{jL})^{C} + V_{ej}^{*} N_{jR}).$$

$$\mathcal{M} = \begin{pmatrix} M_{L} & M_{D} \\ M_{D}^{T} & M_{R} \end{pmatrix}$$

* Weak current:

$$H^{\beta} = \frac{G_{\beta}}{\sqrt{2}} \left[j_{L}^{\rho} J_{L\rho}^{\dagger} + \chi j_{L}^{\rho} J_{R\rho}^{\dagger} + \eta j_{R}^{\rho} J_{L\rho}^{\dagger} + \lambda j_{R}^{\rho} J_{R\rho}^{\dagger} + \text{H.c.} \right]$$

$$\eta \simeq -\tan \zeta \quad \lambda \simeq \left(\frac{M_{W_{1}}}{M_{W_{2}}} \right)^{2}$$

Matching

Cirigliano et al. JHEP12,097(2018)

Cirigliano et al. JHEP12,097(2018) * Matching to SMEFT

- * Dim-5: $\mathscr{C}^{(5)}\epsilon_{kl}\epsilon_{mn}(L_k^T C L_m)H_l H_n$
- * Dim-7: $\mathscr{C}_{LHDe}^{(7)} \epsilon_{ij} \epsilon_{mn} (L_i^T C \gamma_{\nu} e) H_j H_m (D^{\mu} H_n)$

 $\mathcal{C}_{Leu\bar{d}H}^{(7)}\epsilon_{ij}(L_i^T C\gamma_\mu e)(\bar{d}\gamma^\mu u)H_j$

Cirigliano et al. JHEP12,097(2018) * Matching to SMEFT

* Dim-5: $\mathscr{C}^{(5)}\epsilon_{kl}\epsilon_{mn}(L_k^T C L_m)H_l H_n$

* Dim-7: $\mathscr{C}_{LHDe}^{(7)} \epsilon_{ij} \epsilon_{mn} (L_i^T C \gamma_{\nu} e) H_j H_m (D^{\mu} H_n)$

 $\mathcal{C}_{Leu\bar{d}H}^{(7)}\epsilon_{ij}(L_i^T C\gamma_\mu e)(\bar{d}\gamma^\mu u)H_j$

Cirigliano et al. JHEP12,097(2018) * Matching to SMEFT

* Dim-5: $\mathscr{C}^{(5)} \epsilon_{kl} \epsilon_{mn} (L_k^T C L_m) H_l H_n$

* Dim-7: $\mathscr{C}_{LHDe}^{(7)} \epsilon_{ij} \epsilon_{mn} (L_i^T C \gamma_{\nu} e) H_j H_m (D^{\mu} H_n)$

 $\mathscr{C}_{Leu\bar{d}H}^{(7)}\epsilon_{ij}(L_i^T C\gamma_\mu e)(\bar{d}\gamma^\mu u)H_j$

Cirigliano et al. JHEP12,097(2018) * Matching to SMEFT

- * Dim-5: $\mathscr{C}^{(5)}\epsilon_{kl}\epsilon_{mn}(L_k^T C L_m)H_l H_n$
- * Dim-7: $\mathscr{C}_{LHDe}^{(7)} \epsilon_{ij} \epsilon_{mn} (L_i^T C \gamma_{\nu} e) H_j H_m (D^{\mu} H_n)$

 $\mathcal{C}_{Leu\bar{d}H}^{(7)}\epsilon_{ij}(L_i^T C\gamma_\mu e)(\bar{d}\gamma^\mu u)H_j$

LEFT

Cirigliano et al. JHEP12,097(2018)

- Matching operators after EWSB, we focus on long-range mechanism with light neutrinos:
- * Dim-3:

$$m_{\beta\beta}\nu_{eL}^T C \nu_{eL} \qquad \qquad m_{\beta\beta} = -v^2 (\mathscr{C}^{(5)})_{ee}$$

* Dim-6: $C_{VL}^{(6)}\bar{u}_{L}\gamma^{\mu}d_{L}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \qquad C_{VL}^{(6)}\bar{u}_{R}\gamma^{\mu}d_{R}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \qquad C_{VR}^{(6)}\bar{u}_{R}\gamma^{\mu}d_{R}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \qquad C_{VR}^{(6)}\bar{u}_{R}\gamma^{\mu}d_{R}\bar{e}_{R}\gamma^{\mu}d_{R}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \qquad C_{VR}^{(6)}\bar{u}_{R}\gamma^{\mu}d_{R}\bar{e}_{R}\gamma$

$$C_{VL}^{(6)} = -iV_{L}^{ud} \frac{v^{3}}{\sqrt{2}} (\mathscr{C}_{LHDe})^{*}$$
$$C_{VR}^{(6)} = \frac{v^{3}}{\sqrt{2}} (\mathscr{C}_{LeudH}^{(7)})^{*}$$

* The mesonic chiral Lagrangian at LO $\mathscr{L}_{\pi} = \frac{F_0^2}{4} Tr[(D_{\mu}U)^{\dagger}D^{\mu}U] + \frac{F_0^2}{4} Tr[U^{\dagger}\chi + U\chi^{\dagger}]$

* The baryonic chiral Lagrangian at LO

 $\mathscr{L}_{\pi N}^{(1)} = i\bar{N}v \cdot DN + g_A\bar{N}S \cdot uN + c_5\bar{N}\hat{\chi}_+N + \dots$

* NLO $\mathscr{L}_{\pi N}^{(2)} = \frac{1}{2m_N} (v^{\mu}v^{\nu} - g^{\mu\nu})(\bar{N}D_{\mu}D_{\nu}N) - \frac{g_M}{4m_N} \epsilon^{\mu\nu\alpha\beta}v_{\alpha}\bar{N}S_{\beta}f_{\mu\nu}^+N\dots$

* **XEFT Lagrangian for these weak decay vertices is** $\mathcal{A}^{n \to pe^{-}\nu} = \bar{N}\tau^{+} \left[\frac{l_{\mu} + r_{\mu}}{2} J_{V}^{\mu} + \frac{l_{\mu} - r_{\mu}}{2} J_{A}^{\mu} \right] N$

* the lepton currents are introduced as external fields $l_{\mu} = \frac{2G_{F}}{\sqrt{2}v}(\tau^{+}) \left[-2vV_{ud}\bar{e}_{L}\gamma_{\mu}\nu_{L} + vC_{VL}^{(6)}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \right] + \text{h.c.}$ $r_{\mu} = \frac{2G_{F}}{\sqrt{2}v}(\tau^{+}) \left[vC_{VR}^{(6)}\bar{e}_{R}\gamma_{\mu}C\bar{\nu}_{L}^{T} \right] + \text{h.c.}$ * And corresponding nuclear current $J_{V}^{\mu} = g_{V}(\mathbf{q}^{2}) \left(v^{\mu} + \frac{p^{\mu} + p'^{\mu}}{2m_{N}} \right) + \frac{ig_{M}(\mathbf{q}^{2})}{m_{N}} \varepsilon^{\mu\nu\alpha\beta}v_{\alpha}S_{\beta}q_{\nu},$ $J_{A}^{\mu} = -g_{A}(\mathbf{q}^{2}) \left(2S^{\mu} - \frac{v^{\mu}}{2m_{N}} 2S \cdot (p + p') \right) + \frac{g_{P}(\mathbf{q}^{2})}{2m_{N}} 2q^{\mu}S \cdot q,$

* **XEFT Lagrangian for these weak decay vertices is** $\mathcal{A}^{n \to pe^{-}\nu} = \bar{N}\tau^{+} \left[\frac{l_{\mu} + r_{\mu}}{2} J_{V}^{\mu} + \frac{l_{\mu} - r_{\mu}}{2} J_{A}^{\mu} \right] N$

* the lepton currents are introduced as external fields $l_{\mu} = \frac{2G_F}{\sqrt{2}v} (\tau^+) \left[-2vV_{ud}\bar{e}_L\gamma_{\mu}\nu_L + vC_{VL}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + \text{h.c.}$ $r_{\mu} = \frac{2G_F}{\sqrt{2}v} (\tau^+) \left[vC_{VR}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + \text{h.c.}$ * And corresponding nuclear current $J_V^{\mu} = g_V(\mathbf{q}^2) \left(v^{\mu} + \frac{p^{\mu} + p'^{\mu}}{2m_N} \right) + \frac{ig_M(\mathbf{q}^2)}{m_N} \varepsilon^{\mu\nu\alpha\beta} v_{\alpha}S_{\beta}q_{\nu},$ $J_A^{\mu} = -g_A(\mathbf{q}^2) \left(2S^{\mu} - \frac{v^{\mu}}{2m_N} 2S \cdot (p+p') \right) + \frac{g_P(\mathbf{q}^2)}{2m_N} 2q^{\mu}S \cdot q,$

* **XEFT Lagrangian for these weak decay vertices is** $\mathcal{A}^{n \to pe^{-}\nu} = \bar{N}\tau^{+} \left[\frac{l_{\mu} + r_{\mu}}{2} J_{V}^{\mu} + \frac{l_{\mu} - r_{\mu}}{2} J_{A}^{\mu} \right] N$

* the lepton currents are introduced as external fields $l_{\mu} = \frac{2G_F}{\sqrt{2}v}(\tau^+) \left[-2vV_{ud}\bar{e}_L\gamma_{\mu}\nu_L + vC_{VL}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + \text{h.c.}$ $r_{\mu} = \frac{2G_F}{\sqrt{2}v}(\tau^+) \left[vC_{VR}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + \text{h.c.}$ * And corresponding nuclear current $J_V^{\mu} = g_V(\mathbf{q}^2) \left(v^{\mu} + \frac{p^{\mu} + p'^{\mu}}{2m_N} \right) + \frac{ig_M(\mathbf{q}^2)}{m_N} \varepsilon^{\mu\nu\alpha\beta}v_{\alpha}S_{\beta}q_{\nu},$ $J_A^{\mu} = -g_A(\mathbf{q}^2) \left(2S^{\mu} - \frac{v^{\mu}}{2m_N} 2S \cdot (p+p') \right) + \frac{g_P(\mathbf{q}^2)}{2m_N} 2q^{\mu}S \cdot q,$

- * **XEFT Lagrangian for these weak decay vertices is** $\mathcal{A}^{n \to pe^{-}\nu} = \bar{N}\tau^{+} \left[\frac{l_{\mu} + r_{\mu}}{2} J_{V}^{\mu} + \frac{l_{\mu} - r_{\mu}}{2} J_{A}^{\mu} \right] N$
- * the lepton currents are introduced as external fields $l_{\mu} = \frac{2G_F}{\sqrt{2}v} (\tau^+) \left[-2vV_{ud}\bar{e}_L\gamma_{\mu}\nu_L + vC_{VL}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + h.c.$ $r_{\mu} = \frac{2G_F}{\sqrt{2}v} (\tau^+) \left[vC_{VR}^{(6)}\bar{e}_R\gamma_{\mu}C\bar{\nu}_L^T \right] + h.c.$ * And corresponding nuclear current $r_{\mu} = \frac{2V}{\sqrt{2}v} \left(-\frac{p^{\mu} + p'^{\mu}}{2} \right) \frac{iq_M(q^2)}{2} + \frac{p(q^2)}{2} = q^{\mu} + q^{$

$$J_{V}^{\mu} = g_{V}(\mathbf{q}^{2}) \left(v^{\mu} + \frac{p^{\mu} + p^{\mu}}{2m_{N}} \right) + \frac{ig_{M}(\mathbf{q}^{2})}{m_{N}} \varepsilon^{\mu\nu\alpha\beta} v_{\alpha} S_{\beta} q_{\nu} ,$$

$$J_{A}^{\mu} = -g_{A}(\mathbf{q}^{2}) \left(2S^{\mu} - \frac{v^{\mu}}{2m_{N}} 2S \cdot (p + p') \right) + \frac{g_{P}(\mathbf{q}^{2})}{2m_{N}} 2q^{\mu} S \cdot q ,$$

Decay width Doi et al. PTPS83,1(1985)

* The decay width can be obtained from S-matrix theory

$$d\Gamma_{0\nu} = 2\pi \sum_{\text{spin}} |R_{0\nu}|^2 \delta(\varepsilon_1 + \varepsilon_2 + E_f - M_i) d\Omega_{e_1} d\Omega_{e_2}$$

* The reaction matrix element can be expressed as

$$R_{0\nu} = \frac{1}{\sqrt{2}} \int dx \int dy \langle p_1 p_2; f \mid T\{e^{iH_0(x_0 - y_0)}H_{int}(\overrightarrow{x})H_{int}(\overrightarrow{y})\} \mid i \rangle$$

* This is a typical second order process

Decay width

* After tedious derivation, we come to $\Gamma^{0\nu} = \frac{|m_{\beta\beta}|^2}{m_e^2} \mathscr{C}_{mm} + |\frac{C_{VL}^{(6)}}{2V_{ud}}|^2 \mathscr{C}_{\eta\eta} + |\frac{C_{VR}^{(6)}}{2V_{ud}}|^2 \mathscr{C}_{\lambda\lambda}$ $+ Re(\frac{m_{\beta\beta}C_{VR}^{(6)}}{2m_eV^{ud}}) \mathscr{C}_{m\lambda} - Re(\frac{m_{\beta\beta}C_{VL}^{(6)}}{2m_eV^{ud}}) \mathscr{C}_{m\eta} - Re(\frac{C_{VL}^{(6)}C_{VR}^{(6)}}{4|V^{ud}|^2}) \mathscr{C}_{\lambda\eta}$

* This agrees with earlier calculations based on LR symmetric model

Decay width

 $\mathcal{C}_{mm} = \mathcal{G}_{01} |M_m^{0\nu}|^2$ $\mathcal{C}_{m\lambda} = -\mathcal{G}_{03}M_m^{0\nu}M_{\omega-}^{0\nu} + \mathcal{G}_{04}M_m^{0\nu}M_{a+}^{0\nu}$ $\mathcal{C}_{m\eta} = \mathcal{G}_{03} M_m^{0\nu} M_{\omega+}^{0\nu} - \mathcal{G}_{04} M_m^{0\nu} M_{a-}^{0\nu} - \mathcal{G}_{05} M_m^{0\nu} M_P^{0\nu}$ $+ \mathcal{G}_{06} M_m^{0\nu} M_B^{0\nu}$ $\mathcal{C}_{\lambda\lambda} = \mathcal{G}_{02} |M^{0\nu}_{\omega}|^2 + \mathcal{G}_{011} |M^{0\nu}_{a+}|^2$ $\mathcal{C}_{\eta\eta} = \mathcal{G}_{02} |M^{0\nu}_{\omega+}|^2 + \mathcal{G}_{011} |M^{0\nu}_{a-}|^2 + \mathcal{G}_{08} |M^{0\nu}_P|^2$ $+ \mathcal{G}_{09} |M_B^{0\nu}|^2 - \mathcal{G}_{07} M_B^{0\nu} M_B^{0\nu}$ $\mathcal{C}_{\lambda\eta} = -2\mathcal{G}_{02}M^{0\nu}_{\omega-}M^{0\nu}_{\omega+} - \mathcal{G}_{010}(M^{0\nu}_{a+}M^{0\nu}_{\omega+} + M^{0\nu}_{a-}M^{0\nu}_{\omega-})$ $-2\mathcal{G}_{011}M^{0\nu}_{a+}M^{0\nu}_{a-}$

 Here G's are phase space factors and M's the matrix elements

NME

$$\begin{split} M_{m}^{0\nu} &= -M_{F} + M_{GT} + M_{T} & M_{iGT} = M_{iGT}^{AA} + M_{iGT}^{AP} + M_{iGT}^{PP} + M_{iGT}^{MM} \\ M_{\omega\pm}^{0\nu} &= M_{\omega GT\pm} + M_{\omega T\pm} \pm M_{\omega F} & M_{iT} = M_{iT}^{AA} + M_{iT}^{AP} + M_{iT}^{PP} + M_{iT}^{MM} \\ M_{q\pm}^{0\nu} &= \frac{1}{3m_{e}R} (M_{qGT\pm} - 6M_{qT\pm} \pm 3M_{qF}) & i = m, \omega, q \\ M_{R}^{0\nu} &= \frac{1}{m_{e}R} (M_{RGT} + M_{RT}) \\ M_{P}^{0\nu} &= \frac{1}{m_{e}R} M_{P} \end{split}$$

* Detailed expressions for NMEs

Master formula

 Besides this S-matrix derivation, there are also the so-called master formula

$$\left(T_{1/2}^{0\nu} \right)^{-1} = g_A^4 \left\{ G_{01} \left(|\mathcal{A}_{\nu}|^2 + |\mathcal{A}_R|^2 \right) - 2(G_{01} - G_{04}) \operatorname{Re} \mathcal{A}_{\nu}^* \mathcal{A}_R + 4G_{02} |\mathcal{A}_E|^2 \right. \\ \left. + 2G_{04} \left[|\mathcal{A}_{m_e}|^2 + \operatorname{Re} \left(\mathcal{A}_{m_e}^* (\mathcal{A}_{\nu} + \mathcal{A}_R) \right) \right] \right. \\ \left. - 2G_{03} \operatorname{Re} \left[(\mathcal{A}_{\nu} + \mathcal{A}_R) \mathcal{A}_E^* + 2\mathcal{A}_{m_e} \mathcal{A}_E^* \right] \right. \\ \left. + G_{09} |\mathcal{A}_M|^2 + G_{06} \operatorname{Re} \left[(\mathcal{A}_{\nu} - \mathcal{A}_R) \mathcal{A}_M^* \right] \right\}.$$

J

* Where the amplitudes A are all sums of known nuclear matrix elements from mass mechanism

Nuclear many-body methods

- * For double beta decay calculations, various manybody approaches have been adopted:
 - * Nuclear Shell Model
 - * Quasi-particle Random phase approximation (QRPA)
 - * Generator coordinator method (GCM)
 - Interacting Boson model (IBM-2)

Fang et al. In preparation

NME			$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$		⁸² Se-	⁸² Kr	130Te	$e \rightarrow^{130} Xe$	136 Xe \rightarrow^{136} Ba		
			jun45	jj44b	jun45	jj44b	jj55a	GCN50:82	jj55a	GCN50:82	
	F		-0.665	-0.601	-0.624	-0.523	-0.668	-0.701	-0.574	-0.567	
		AA	3.584	3.278	3.360	2.860	3.147	3.180	2.648	2.549	
		AP	-1.090	-0.960	-1.021	-0.834	-0.979	-1.034	-0.820	-0.829	
	GT	PP	0.344	0.300	0.321	0.261	0.313	0.335	0.260	0.268	
М		MM	0.247	0.215	0.229	0.188	0.227	0.244	0.188	0.194	
NI _m		total	3.085	2.833	2.889	2.474	2.708	2.724	2.277	2.183	
	722	AP	-0.013	-0.004	-0.014	-0.012	0.008	0.015	0.002	0.014	
	т	PP	0.002	-0.001	0.003	0.003	-0.006	-0.007	-0.003	-0.006	
	1	MM	-0.001	-0.000	-0.001	-0.002	0.003	0.003	0.001	0.002	
		total	-0.012	-0.004	-0.013	-0.010	0.004	0.010	-0.000	0.010	
	F		-0.637	-0.575	-0.597	-0.500	-0.637	-0.669	-0.545	-0.540	
		AA	3.276	2.980	3.073	2.596	2.883	2.931	2.427	2.351	
		AP	-1.044	-0.919	-0.978	-0.798	-0.939	-0.993	-0.786	-0.795	
	CT	PP	0.333	0.290	0.310	0.252	0.303	0.324	0.252	0.259	
	GI	MM	0.239	0.208	0.221	0.181	0.220	0.236	0.182	0.188	
М.		$GT_{+}total$	2.803	2.558	2.626	2.231	2.466	2.498	2.075	2.002	
$M_{\omega\pm}$		$\mathrm{GT}_{-}\mathrm{total}$	2.325	2.172	2.184	1.789	2.026	2.026	2.711	2.626	
	35.4	AP	-0.012	-0.003	-0.013	-0.011	0.009	0.015	0.003	0.014	
		PP	0.002	-0.001	0.003	0.003	-0.006	-0.007	-0.003	-0.006	
	Т	MM	-0.001	-0.000	-0.001	-0.002	0.003	0.003	0.001	0.002	
		T_{+} total	-0.011	-0.004	-0.012	-0.010	0.005	0.010	0.000	0.010	
		T_{-} total	-0.0013	-0.004	-0.014	-0.014	-0.001	0.004	-0.001	0.006	

* Mass term and ω term are basically the same

-	NME		$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$		⁸² Se-	e^{82} Kr	$^{130}\mathrm{Te}$	$e \rightarrow^{130} Xe$	136 Xe \rightarrow 136 Ba		
			jun45	jj44b	jun45	jj44b	jj55a	GCN50:82	jj55a	GCN50:82	
	F		-0.379	-0.351	-0.359	-0.304	-0.408	-0.417	-0.358	-0.342	
		AA	3.210	2.981	3.016	2.605	2.781	2.751	2.348	2.209	
		AP	4.842	4.317	4.571	3.741	4.267	4.425	3.607	3.563	
	ОТ	PP	-1.943	-1.706	-1.829	-1.479	-1.731	-1.827	-1.454	-1.468	
$M_{q\pm}$	GI	MM	-1.874	-1.636	-1.745	-1.426	-1.708	-1.825	-1.419	-1.456	
		$GT_{+}total$	7.983	7.228	7.502	6.293	7.026	7.173	5.920	5.760	
		$\mathrm{GT}_{-}\mathrm{total}$	4.235	3.956	4.012	3.441	3.610	3.523	3.082	2.848	
	In the	AA	-0.056	-0.033	-0.055	-0.042	-0.031	-0.009	-0.031	0.002	
		AP	0.004	-0.001	0.006	0.008	-0.018	-0.018	-0.007	-0.015	
	т	PP	0.000	0.001	-0.001	-0.003	0.007	0.005	0.002	0.003	
	1	MM	0.000	-0.000	-0.000	-0.001	0.001	0.001	0.000	0.001	
		T_{+} total	-0.051	-0.034	-0.050	-0.035	-0.043	-0.023	-0.036	-0.012	
		T_{-} total	-0.051	-0.034	-0.050	-0.037	-0.041	-0.021	-0.036	-0.009	
M_R	GT		4.256	3.713	4.037	3.314	4.686	5.048	3.948	4.080	
	Т		0.014	0.004	0.018	0.028	-0.056	-0.056	-0.014	-0.042	
M_P			-0.431	-0.279	-0.428	-0.152	-0.498	-0.425	-0.289	-0.255	

MM becomes LO for q term

* Larger R term than expected

		rough estimation			⁷⁶ Ge		⁸² Se			¹³⁰ Te			¹³⁶ Xe			
		lepton	nuclear	\mathcal{R}	$G_{0\nu}$	$M_{0\nu}$		$G_{0\nu}$	$M_{0\nu}$	3	$G_{0\nu}$	$M_{0\nu}$		$G_{0\nu}$	$M_{0\nu}$	
μ_{etaeta}		$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0.24	$5.62 \\ 5.16$		1.02	5.26 4.50		1.43	5.04 5.11		1.46	4.25 4.10	
					r_e	r_N	r_R	r_e	r_N	r_R	r_e	r_N	r_R	r_e	r_N	r_R
$C^{(6)}$	M_{ω}	$\mathcal{O}(\epsilon_{12}/m_e)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	1.25	0.78 0.78	0.98 0.98	1.85	0.78 0.78	$1.45 \\ 1.44$	1.61	0.78 0.77	$1.25 \\ 1.24$	1.57	$0.78 \\ 0.77$	$1.22 \\ 1.21$
C_{VL}	M_q	$\mathcal{O}(\omega R)$	${\cal O}(q/m_e)$	$\mathcal{O}(1)$	0.010	55.1 53.6	$\begin{array}{c} 0.53 \\ 0.51 \end{array}$	0.012	54.0 52.6	$\begin{array}{c} 0.65\\ 0.63\end{array}$	0.013	44.2 43.7	$0.59 \\ 0.58$	0.013	43.4 42.5	$\begin{array}{c} 0.58\\ 0.57\end{array}$
	M_{ω}	$\mathcal{O}(\epsilon_{12}/m_e)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	1.25	0.69 0.69	0.86 0.86	1.85	0.69 0.69	$1.27 \\ 1.27$	1.61	$\begin{array}{c} 0.66\\ 0.66\end{array}$	$\begin{array}{c} 1.07\\ 1.06\end{array}$	1.57	0.66 0.66	$\begin{array}{c} 1.04 \\ 1.04 \end{array}$
$C_{VP}^{(6)}$	M_q	$\mathcal{O}(\omega R)$	${\cal O}(q/m_e)$	$\mathcal{O}(1)$	0.010	$38.1 \\ 38.1$	$\begin{array}{c} 0.36\\ 0.36\end{array}$	0.012	37.7 37.4	$0.45 \\ 0.45$	0.013	$31.3 \\ 29.6$	$\begin{array}{c} 0.41 \\ 0.39 \end{array}$	0.013	31.4 29.0	$\begin{array}{c} 0.42 \\ 0.39 \end{array}$
VA	M_R	$\mathcal{O}(1)$	$\mathcal{O}(q^2/(M_N m_e))$	$\mathcal{O}(\varepsilon^{-1})$	3.02	$64.6 \\ 63.7$	$195.3 \\ 192.4$	2.96	$\begin{array}{c} 63.5\\ 66.4\end{array}$	$187.8 \\ 196.4$	2.97	$65.5 \\ 71.8$	$194.7 \\ 213.4$	2.97	67.8 73.4	201.6 218.2
	M_P	$\mathcal{O}(\alpha Z)$	${\cal O}(q/m_e)$	$\mathcal{O}(\varepsilon^{-1})$	0.34	7.40 5.21	$2.49 \\ 1.75$	0.33	7.65 3.18	$2.50 \\ 1.04$	0.27	7.97 6.71	$2.19 \\ 1.84$	0.25	5.41 4.94	$1.37 \\ 1.25$

 Dominance of R term in C_{VR} and coexistence of w and q terms in C_{VL}

Chen et al. in preparation

	⁷⁶ Ge	⁸² Se	¹³⁰ Te	¹³⁶ Xe
mn	0.919	0.923	0.921	0.920
1111	0.919	0.921	0.920	0.919
m	-4.558	-6.255	-2.730	-2.340
	-2.013	-2.334	-1.507	-1.324
mm	0.851	0.856	0.853	0.858
111	0.839	0.842	0.841	0.838
11	3.830	3.682	4.984	4.584
ΛΛ	5.616	6.291	7.237	6.342
$\lambda\eta$	5.394	6.941	6.914	6.613
	3.792	4.295	3.285	4.166

* A comparison with the so-called master formula

Conclusions

- * EFT studies of neutrinoless double beta decay agrees well with previous model studies
- We give related NMEs with shell model calculations and compare the relative magnitude of each term
- * The mater formula offers very good approximations
- Two frames are equally efficient for double beta decay studies
- Constraints on Wilson coefficients by neutrinoless double beta decay is on going

