

**Conference on frontiers of underground and space particle physics and cosmophysics** 



# Latest results from the **CUORE** experiment

On behalf of the **CUORE** collaboration

Shihong Fu - Fudan University - COUSP2024, Xichang, China, May 10<sup>th</sup>, 2024

# Double Beta Decay (2vββ)

- Same mass number (A), changes the nuclear charge (Z) by two units.
- 2<sup>nd</sup> order weak transition, allowed by the Standard Model.
- Decay to the intermediate nucleus is forbidden.
- Only even mass number nuclei.
- ▶ Half-lives in the order of  $10^{18} \sim 10^{21}$  yr.
- Two-neutrino double beta decay (2νββ) candidate isotopes:
  - <sup>48</sup>Ca, <sup>76</sup>Ge, <sup>82</sup>Se, <sup>96</sup>Zr, <sup>100</sup>Mo, <sup>116</sup>Cd, <sup>124</sup>Sn, <sup>128</sup>Te, <sup>130</sup>Te, <sup>136</sup>Xe, <sup>150</sup>Nd



# Neutrinoless Double Beta Decay (0vββ)

- Beyond Standard Model process
- Lepton Number Violation ( $\Delta L = 2$ )
- Constraints on neutrino mass hierarchy and scale
- Hint on origin of matter/anti-matter asymmetry







Shihong Fu - Fudan University - COUSP2024, Xichang, China, May 10<sup>th</sup>, 2024

# **CUORE** experiment

- Cryogenic Underground Observatory for Rare Events
- In operation at the Laboratori Nazionali del Gran Sasso, Italy



- Main objective: observe  $0\nu\beta\beta$  in <sup>130</sup>Te
- The CUORE detector is hosted in a cryogenfree cryostat
  - ▶ Operating temperature ~ 10 mK
  - Designed for low radioactivity and low vibrations environment
- Energy resolution: goal of 5 keV at  $Q_{\beta\beta}$  (2527.5 keV)
- Low background: goal of  $10^{-2}$  counts / (keV · kg · yr) at  $Q_{\beta\beta}$

Shihong Fu - COUSP2024, Xichang, China, May 10<sup>th</sup>



# Cryogenic Bolometer

- Detector mass
- Reproducibility
- Energy resolution <a>Background level</a>
- Bolometers must be operated at low temperatures.
- The thermal sensor is a Neutron Transmutation Doped (NTD) Ge thermistor, which is sensitive to temperature variation.





# **CUORE** Cryostat

- Custom-made dry dilution refrigerator
- 1.5 t of material at base temperature for ~5 years!
- 5 pulse-tube refrigerators (1 spare)
  - Relative phases tuned for noise cross-canceling
- 6 nested vessels at decreasing temperatures
- Low-temperature lead shielding
  - Modern lead on top of detectors to suppress γ's from cryogenic components
  - Side Roman lead shielding to suppress external  $\gamma$ 's
- 742 kg TeO<sub>2</sub> detectors, 206 kg <sup>130</sup>Te (34% natural isotopic abundance)
- 988 crystal bolometric array
- arranged in 19 towers with 13 floors each, 52 5  $\times$  5 cm<sup>3</sup> TeO<sub>2</sub> crystals per tower

# Data collection





- Stable data collection since 2019, with  $\gtrsim$  90% uptime
- ► More than 2.5 ton yr of raw exposure accumulated

(1) <u>Alduino, C. et al. (CUORE Collaboration),</u> <u>Phys. Rev. Lett. 120, 132501 (2018)</u>

2 Adams, D.Q. et al. (CUORE Collaboration), Phys. Rev. Lett. 124, 122501 (2020)

3 <u>Adams, D.Q. et al. (CUORE Collaboration),</u> <u>Nature 604, 53-58 (2022)</u>





New! of this data release

- Installed diagnostic devices:
  - Seismometers,
  - Accelerometers,
  - Microphones...



Shihong Fu - COUSP2024, Xichang, China, May 10<sup>th</sup> Eur. Phys

<u>Vetter, K.J., Beretta, M., Capelli, C. et al.,</u> <u>Eur. Phys. J. C 84, 243 (2024)</u>

9



Matched filter maximizes signal-to-noise ratio

10



11



# 12



Gain Correction



Coincidences

Pulse Shape Discrimination (PSD)

Blinding





single-site (signal-like)



multi-site (background-like)

- Principal Component Analysis (PCA)
- where the leading component is the average pulse

~88% of 0vββ events involve just one crystal

assign multiplicity (number of involved crystals) and total energy

apply anti-coincidence veto for 0vββ analysis



# Physics data - 2 ton · yr exposure



# from calibration data Fit model:

**Reference** <sup>208</sup>Tl gamma peak at 2615 keV

- Multi-Gaussian response function
- Multi-Compton background
- Flat background

Peak lineshape:

- Coincidence/escape peaks
- Fit at channel-dataset level
- Energy resolution at 2615 keV
  - **FWHM** = (7.550 ± 0.024) keV
    - harmonic mean exposure weighted

Shihong Fu - Fudan University - COUSP2024, Xichang, China, May 10th, 2024

# Detector performance



# $0\nu\beta\beta$ decay search results

Shihong Fu - COUSP2024, Xichang, China, May 10<sup>th</sup>



15

Adams, D.Q. et al. (CUORE Collaboration), arXiv:2404.04453

2500

Energy (keV)

# Background model results

- Full detector geometry and particle interaction implemented in Geant4
- Geant4 output postprocessed to include detector response
- 62 simulated sources (bulk, surface, muons)
- Coincidence events used to constrain source location
- JAGS-based MCMC binned Bayesian fit
- Uniform priors for all components, except muons



16

# 2vββ decay measurement



<sup>130</sup>Te 2νββ component from background model fit to single hits (M1) data
<sup>130</sup>Te 2νββ > 50% of events in the 1~2 MeV energy region

17

Spectral fit

 $T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (\text{stat.})_{-0.15}^{+0.12} (\text{syst.}) \times 10^{20} \text{ yr}$ 

Most precise measurement of  $^{130}$ Te  $2\nu\beta\beta$  decay half-life to date

Adams, D.Q. et al. (CUORE Collaboration), Phys. Rev. Lett. 126, 171801 (2021)

# What's next?

#### 18

#### CUORE phase-I (current)

- Run up to mid-2025
- Reach > 3 ton · yr TeO<sub>2</sub>, 1 ton · yr <sup>130</sup>Te exposure (largest ever collected for <sup>130</sup>Te)
- Room for multiple rare events searches with high statistic, optimal energy resolution and low background

CUORE phase-II

- Cryogenic interventions to improve noise and push towards low energy studies
- Plan to resume datataking in 2026

- CUPID (CUORE Upgrade with Particle Identification)
  - Scintillating cryogenic calorimeters:
  - α vs β/γ and ββ pile-up rejection using light signal
  - Background: goal of 10<sup>-4</sup> counts / (keV · kg · yr)
  - Energy resolution: goal of 5 keV at  $Q_{\beta\beta}$

# Conclusions

CUORE demonstrates the feasibility of a tonne-scale experiment employing cryogenic bolometers, for the search of the 0vββ decay and some other rare events.

- A raw exposure of more than 2.5 ton yr  $TeO_2$  has been achieved as of today!
  - ▶ The data-taking is proceeding with  $\gtrsim$  90% uptime.

**CUORE released physics results of** <sup>130</sup>Te  $0\nu\beta\beta$  decay, utilizing 2 ton·yr TeO<sub>2</sub> data.

No evidence of 0vββ decay with observed data.

Bayesian 90% C.I. limit.

CUORE obtained the most precise half-life measurement for the 2νββ decay of <sup>130</sup>Te.

CUORE will continue to take data until it reaches <sup>130</sup>Te exposure of 1 ton · yr, *i.e.*, 3 ton · yr TeO<sub>2</sub> exposure.

Thanks for the unique feature of allow deployment of different isotopes by using the same infrastructure.

 $T_{1/2}^{0\nu} > 3.8 \cdot 10^{25} \text{ yr} @ 90\% \text{ C.I.}$ 

$$T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (\text{stat.})_{-0.15}^{+0.12} (\text{syst.}) \times 10^{20} \text{ yr}$$



## 第三届地下和空间粒子物理与宇宙物理前沿问题研讨会

# Thank you for your attention!

CUORE Collaboration Meeting Fall 2023



Istituto Nazionale di Fisica Nucleare



















Technology







.....

20







SAN LUIS OBISPO





# Backup

# CUPID

CUORE Upgrade with **Particle ID**entification  $\triangleright$  <sup>100</sup>Mo 0νββ decay candidate:  $\triangleright Q_{\beta\beta} \sim 3034 \text{ keV}$ New detector technology: scintillating calorimeters Scintillation light: >99%  $\alpha/\beta$  discrimination ~1600 Li<sub>2</sub>MoO<sub>4</sub> crystals ▶ High energy resolution (~5 keV)



# Laboratori Nazionali del Gran Sasso - Italy



- ▶ 3600 m.w.e. deep
- ▶  $\mu$ : ~3x10<sup>-8</sup>/(s cm<sup>2</sup>) → 10<sup>6</sup> less than above ground
- γ: ~0.73/(s cm<sup>2</sup>)
- neutrons: < 4x10<sup>-6</sup> n/(s cm<sup>2</sup>)



23

# The cryostat performance



24

Adams, D.Q. et al. (CUORE Collaboration), Nature 604, 53-58 (2022)

<sup>130</sup>Te  $\beta\beta$  to first 0<sup>+</sup> excited state

## Other rare event searches







25

Adams, D.Q. et al. (CUORE Collaboration), Phys. Rev. Lett. 129, 222501 (2022)

#### Adams, D.Q. et al. (CUORE Collaboration), Eur. Phys. J. C 81, 567 (2021)

Adams, D.Q. et al. (CUORE Collaboration), Phys.Rev.C 105, 065504 (2022)

# Efficiencies



| Reconstruction<br>Efficiency                | Probability that a good event is triggered,<br>reconstructed properly, and not rejected by basic pile-<br>up cuts<br>• Evaluated on heater events                                       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-coincidence<br>Efficiency              | Quantifies the probability of that an event is not<br>erroneously cut by being in accidental coincidence<br>with an unrelated event<br>• Calculated on 1460 keV <sup>40</sup> K peak    |
| Pulse Shape<br>Discrimination<br>Efficiency | Fraction of signal-like events passing the PSD<br>• Calculated on events in the <sup>60</sup> Co, <sup>40</sup> K, and <sup>208</sup> Π γ<br>peaks that passed the anti-coincidence cut |

# Background in Region of Interest (ROI)

#### α region

- ▶ fit flat background in [2650, 3100] keV
- 1.40(2) × 10<sup>-2</sup> counts/(keV kg yr)

#### • $Q_{\beta\beta}$ region

- ▶ fit background + <sup>60</sup>Co peak in [2490, 2575] keV
- 1.49(4) × 10<sup>-2</sup> counts/(keV kg yr)

#### source

~90% of the background in the ROI is given by degraded alpha interactions



27

28

#### Trigger

**Optimum Filter** 

Gain Correction

**Energy Calibration** 

Coincidences

Pulse Shape Discrimination (PSD)

- Random fraction of events in <sup>208</sup>Tl line shifted to  $Q_{\beta\beta}$  and vice versa
- Original energies stay encrypted until unblinding
- Unblinding happens only after full analysis procedure is finalized



Blinding