

CICENNS: a 300-kg CsI(Na) Detector for Coherent Elastic Neutrino-Nucleus Scattering

肖翔(中山大学)

on behalf of the CICENNS Collaboration

May 9, 2024 COUSP2024 @ Xichang

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

▶ qR < 1

- Z-exchange between neutrino and nucleus
- ➢ Nucleus recoils as a whole
- > Coherent up to $E_v \sim 50 \text{ MeV}$

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M \left(1 - \frac{MT}{2E_\nu^2}\right) F(Q^2)^2$$

$$\sigma \propto Q_W^2 \propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

$$\Longrightarrow \sigma \propto N^2$$

$$T_R \approx \frac{E_\nu^2 (\text{MeV})}{A} \text{ keV}$$

Neutrino sources for CEvNS detection

The Sun

- $> \sim 5 \times 10^{6}/\text{s/cm}^{2}$ for ⁸B neutrino
- ▶ Mostly $E_{\nu} < 10 \text{ MeV}$
- > Not observed yet

Spallation Neutron Source

- \succ ~1×10⁷/s/cm² @ 20 m
- $\succ E_{\nu} \sim 50 \text{ MeV}$
- ➢ Observed in 2017

Nuclear Reactor

Reactor Antineutrino Spectrum

- $\sim 1 \times 10^{13} / \text{s/cm}^2 @ 25 \text{m with} \\ 3 \text{ GW power}$
- → Mostly $E_{\nu} < 6$ MeV
- \succ Not observed yet

First experimental observation by COHERENT

SCIENCE 357, no. 6356, 1123-1126 (2017)

14.6 kg CsI(Na) detector
308.1 day live-time (beam-on)
134 ± 22 events observed
6.7 σ observation

CICENNS experiment

Development of 300-kg CsI(Na) detector for CEvNS

➢ Obtain sufficient CEvNS events with substantial target mass

Establish a new field of studying unexplored physics using CEvNS

Detection of ~30 MeV neutrinos from pion/muon decays at rest

(at spallation neutron source)

Precise measurements

• CEvNS cross section \rightarrow weak couplings at low momentum transfer

• Mean radius of neutron distribution inside nucleus

> New physics searches

- Non-standard neutrino interactions
- A new region of neutrino magnetic moment
- Efficient search for sterile neutrino oscillation by neutral current
- New particle searches: dark photons or axion-like particles

Drawings of detector and shielding

CsI(Na) crystal detector

- \geq 20-kg CsI(Na) \times 15
- ➤ 140 mm (Dia.) × 287 mm (L) each
- Two 5-inch R877-100 PMTs (super-bialkali)
- > OFHC copper encapsulation

Veto and shielding (from inside to outside)

- > 15-cm thick plastic scintillator as veto
- ➢ 8-cm thick inner HDPE
- \succ 15-cm thick lead
- ➤ 15-cm thick outer HDPE

China Spallation Neutron Source (CSNS)

8.2 m above the beam target (7.2 m thick: steel, 1 m thick: concrete)

▶ 1.6 GeV proton beam
 ▶ 140 kW (→ 500 kW)
 ▶ 25 Hz repetition rate

(Taken from C. Su, Q. Liu and T. Liang, arXiv:2303.13423 (2023))

Neutrino flux at 10.5 m: $2.0 \times 10^7 / \text{cm}^2/\text{s}$ (~40% of COHERENT)

 \rightarrow ~2500 observed events with 300 kg (~300 events with 14.6 kg at COHERENT)

Expected CEvNS events of CICENNS at CSNS

- 14.6 kg CsI(Na) crystal for ~300 CEvNS events (PRL 129, 081801, 2022)
- ➤ 300 kg CsI crystals for ~2,500 CEvNS events (neutrino flux at CSNS: ~40% of ONL) if the energy threshold is 5 keV_{nr}
- ➢ for ~4,000 CEvNS events if the energy threshold can be lowered to 2 keV_{nr}

Backgrounds

- Beam related fast neutron
 - The most significant background
 - On-site measurement on-going, joint effort from SYSU and UCAS
- PMT dark count pile-up
- Radioactivity in detector materials
 - Crystal internal background from ⁸⁷Rb, ¹³⁷Cs, ...
 - Background from PMTs and surrounding materials
- Environmental radioactivity
- Cosmic muon induced neutrons and gammas

Full Geant4-based MC on-going

Figure 18: Background spectra obtained using GEANT4 simulation for a 20 kg CsI(Na) crystal with contaminations of 10 mBq/kg 137 Cs, 30 mBq/kg 134 Cs, and 10 ppb 87 Rb: (a) 137 Ba*; (b) 137 Cs; (c) 134 Cs; (d) 87 Rb; and (e) total summed spectrum.

(Ref: KIMS Collaboration, Nucl. Instr. Meth. A 571, 644 (2007))

Key features of CICENNS design

- Lower internal radioactivity background
 - 20 ppb ⁸⁷Rb in COHERENT → ~1 ppb ⁸⁷Rb achieved in CICENNS (collaboration with SICCAS)
- Lower dark count pile-up background
 - two PMTs on both ends of CsI(Na) crystal, ~3 orders of magnitude reduction (ref COSINE-100)
- Active veto
 - Plastic scintillator veto surrounding crystal detectors, mostly to veto beam related fast neutron, and also to identify cosmic muon track
- Better light collection of crystal encapsulation
- Multiple detector modules for further background rejection

Isotopes	$^{238}\mathrm{U}$	232 Th	$^{87}\mathrm{Rb}$	^{137}Cs	^{134}Cs
	(ppt)	(ppt)	(ppb)	(mBq/kg).	(mBq/kg).
CICENNS	$10{\pm}10$	$30{\pm}10$	~ 0.5	??	??
KIMS	$0.75 {\pm} 0.23$	$0.38 {\pm} 0.07$	1.3 ± 0.4	$6.3 {\pm} 0.7$	14.1 ± 1.1
COHERENT	< 1000	<1000	~ 20	$28 \pm 3.$	26 ± 2

11

Sensitivity: flavored CEvNS cross section and weak couplings

The CEvNS rate is a clean SM prediction

At momentum transfer Q=50 MeV/c

• COHERENT: $\sin^2 \theta_{\rm W} = 0.220^{+0.028}_{-0.026}$ (±10%)

→ CICENNS: $\sim 1\%$

* SM prediction: 0.23857(5)

Sensitivity: Non-standard neutrino interaction

Sensitivity: mean radius of neutron distribution inside nucleus

Observed CEvNS recoil energy spectrum → mean radius of neutron distribution inside nucleus (Cs or I: ~5 fm) Uncertainty of neutron form factor

- COHERENT: ~8%
- → CICENNS: $\sim 1\%$

Timeline

- ➢ Oct. 2022: CICENNS effort initiated at SYSU
- Dec. 2022: Procurement started
- ➢ Jan. 2023 − present
 - Physics design and engineer design
 - $\circ~$ MOU signed between SYSU and SICCAS
 - R&D on CsI(Na) crystal purification
 - CsI(Na) mass production
 - PMT & electronics test
 - Full Geant4-based simulation of optical property and background
 - Technical Design Report in preparation
- > End of 2024: Encapsulated CsI(Na) crystal detectors delivered to SYSU
- ➢ Mar. 2025: Completion of detector assembly
- ➢ Jun. 2025: Testing and commissioning at SYSU
- ➤ Jul. 2025: Start to deploy CICENNS at CSNS and taking data

- A 300-kg CsI(Na) crystal detector for CEvNS measurement at CSNS has been proposed, and is being built now.
- Precise test of SM at low momentum transfer and new physics search BSM are being pursued based on large statistics of CEvNS events.
- ➤ We wish to finalize the detector design and a TDR, and complete the detector construction in 2025.

We cordially invite your joining this effort!

Thank you!