

台山中微子实验进展

四川西昌

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会(COUSP2024) 2024-07-08

- ▶ TAO及物理目标
- ➤ TAO探测器
- ≻ SiPM和电子学
- ▶ 低温液闪研制
- ▶ 1:1 模型实验
- > 离线软件
- ≻台山实验室改造
- ▶ 总结

一、TAO及物理目标

- 1. 台山中微子实验(TAO)
- ➢ JUNO的卫星实验(近点探测器),2018年1月正式启动,2020年1月 完成初设评审,3月完成CDR(ArXiv: 2005.08745)。
- ▶ 2023年最终确定建在台山1#堆1HW厅,地下10m,基线44m。
- ▶ 造价约3000万,意大利INFI贡献1M欧元,俄罗斯JINR贡献1M美元, 国内单位包括高能所、中山大学等。
- ▶ 采用很有挑战的创新方案: 全覆盖大面积SiPM阵列+吨级低温液闪
- ▶ 核心指标,能量分辨达到 ≤ 2% / √E MeV

2. 物理目标1-反应堆中微子能谱精确测量

- ▶ 大亚湾发现实验与理论(Huber-Mueller)能谱存在反常(~6σ@5MeV)
- ▶ ²³⁵U裂变截面与理论偏差大(²³⁹Pu较符合)
- ➤ TAO 将对谱形精细结构进行测量,研究能谱反常,为核数据提供新基准。 要求2%/√E 能量分辨(DayaBay: 8%/√E, JUNO: 3%/√E)
- ▶ DayaBay卷积谱与求和谱差异2%; TAO和JUNO卷积谱与求和谱差异<1%。

https://arxiv.org/pdf/1507.05613

⁹²Rb

1.25E-44

1.00E-4

98Nb

102Tc

3. 物理目标2-江门中微子实验(JUNO)能谱输入

- ▶ 基线: JUNO: 52.5km; TAO: 44.15m, TAO统计量高20倍, 能谱误差<1% @3年取数
- ➢ JUNO预期无振荡能谱可由TAO测量能谱结合同位素能谱修正得到,消除谱形不确定性和模型依赖, 相比DayaBay灵敏度Δχ² ↑~1.9。

 $S_{JUNO}(E_v) = S_{TAO}(E_v) + \sum_i \Delta f_i S_i(E_v), \Delta f_i$ 四种主要同位素裂变分数差, $S_i(E_v)$ 为对应同位素能谱

TAO CDR(arXiv:2005.08745v1)

4. 物理目标3-惰性中微子寻找

- ▶ 基于活性中微子(active)+惰性中微子(sterile) 振荡模型(3+1)寻找惰性中微子
- ▶ TAO 短基线(<45m), \overline{v}_e 振荡几率可近似为:

$$P_{\overline{v}_e \to \overline{v}_e}(L, E) = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^2 \sin^2 \frac{\Delta m_{4i}^2 L}{4E}, \quad U_{ei}^2 = 1 - 4\sum_{i=1}^3 |U_{ei}|^$$

5. 物理目标4-反应堆监测

▶ ²³⁵U和²³⁹Pu核素中微子谱形测量误差达到 4% 和8%,为反应堆燃料演化提供更准确输入(DayaBay 5% 和10%)

 $U_{ei}{=}\theta_{12}, \theta_{13}, \theta_{14}$

二、TAO 探测器 全覆盖高PDE SiPM,低温新配方液闪

亮点参数:

- ▶ 能量分辨<2%@√E MeV
- ▶ SiPM 覆盖率: 94% of ~4π, ~10m^2
- ➢ SiPM PDE >50% (~4000 p.e./MeV)
- ➢ SiPM DCR: <100 Hz/mm^2 @-50℃</p>
- ▶ 除水低温液闪<10ppm
- ▶ 温度均匀性: ±0.5℃
- ◆ 中心探测器
- ▶ 有机玻璃球 1.8m (ID), 20mm厚 2.8 t 低温掺钆Gd-LS
- ▶ 铜球壳 1.886m (ID), 12mm厚 4024 片 of 50*50mm^2 SiPM 单元
- ▶ 不锈钢罐 2.09m(ID), 10mm厚 3.2 t LAB/Gd-LAB
- ▶ 低温系统 4.5kW 制冷功率
 150mm厚全覆盖密胺脂保温层
 -50 ±0.5℃

◆ 顶反符径迹(TVT)
4层 PS, 160 条
2 m×20 cm×2 cm/条
项屏蔽(HDPE)
◆ 刻度(ACU & CLS)
6 种豁免源

◆ 水箱
 3 个不规则水箱
 ~300只3" PMT

溢流罐 铜球壳 SiPM 阵列 有机玻璃球 不锈钢罐 密胺脂保温层 底部铅屏蔽

1. 中心探测器(CD)

有机玻璃球: 1.8m (ID), 20mm厚, 93% 透光率(同JUNO有机玻璃球)
铜球壳: 1.886m (ID), 12mm厚, 全新无氧铜料(洛铜), U&Th:<0.04, K-40<0.1Bq/kg 极低放射本底及最好导热性, 导热及支撑SiPMs 和有机玻璃球
不锈钢罐: 2.09m(ID), 10mm厚, U:<0.11, Ra:1.89, Th: <0.07, K-40:0.25 Bq/kg
低温系统: 制冷功率4.5kW, SiPM & FEB 热功率: ~2kW, 漏热: 0.5kW, 铜壳和钢罐均布设制冷管; 150mm厚密胺泡沫保温层(0.036w/m·k)

◆ 铜球壳制造(难点: 焊接和钻孔)

▶ 铜球壳是TAO探测器结构和制造最复杂的部件。8000多Φ5.3mm 的孔,4000多11*35mm的槽。精度:球内径(1886)<0.5mm,厚度 (12)<0.2mm, 平面度(1910)<0.08mm; 微孔直径(5.3)<0.05mm, 角 度(4π)<0.01°,位置(4π)<0.04mm。保证SiPM单元间隙0.4mm。 ▶ 焊接在600℃高温下进行,最长焊缝6m,厚度28mm。通过创新 焊接工艺方法完成焊接和变形控制。共5大工序,30多小工序, 整体制造历时2年(全在疫情期间)。

Cutting \rightarrow Molding \rightarrow Welding \rightarrow Machining

▶ 所有表面镀PTFE(25~50um)保证Gd-LAB/LS 兼容性要求。

Dividing(8 parts)

Turning and milling

Machining done

Assembly & welding

Degreasing Sandblasting

Welding done

PTFE coating done

◆ 材料放射性及液闪兼容性

- ➤ TAO将可能用到LAB、GdLAB、GdLS,要求所有材料跟相应接触的液体具有良好兼容。
- ▶ 最主要的是铜壳、SiPM及FEB、钢罐跟GdLS的兼容。通过 大量测试,铜和钢表面镀PTFE,PCB涂环氧树脂满足兼容性 要求(运行6年)。
- ▶ 对所有材料都进行了放射性测量,确定所有的材料均满足放射性要求。研发了低放射本底PCB材料(比普通FR4低60倍)。
- ▶ 发现FEB上的电容和连接器放射性本底很高,通过大量选型 和测量,已找到满足本底要求的替换产品,6月底完成全部 更换。

材料总放射性本底控制在100Hz事例率

	TAO-CD Radioassay list								
NO.	Name	Material	R	esults Bq/	kg	Remark			
			U	Th	K				
1	SS tank	SS	< 0.06	< 0.04	< 0.17	Passed			
2	SS cooling pipe	SS	< 0.27	< 0.34	<0.98	Passed			
3	SS tank paint	Oil&Resin	< 0.33	< 0.42	1.43 ± 1.19	Passed			
4	Ti support leg	Ti alloy	< 0.0977	<0.0688	< 0.318	Passed			
5	Copper shell	O-free Cu	< 0.0380	< 0.023	< 0.105	Passed			
6	Copper cooling pipe $\Phi 14$	Red copper	< 0.45	<0.28	<0.99	Passed			
7	Copper cooling pipe Φ16	Red copper	<0.29	<0.33	< 0.82	Passed			
8	PTFE Coating	PTFE	< 0.44	< 0.31	<1.53	Passed			
9	Acrylic sphere	Acrylic	Refer to JUNO			Passed			
10	Overflow tank	Acrylic	Refer to JUNO			Passed			
11	Insulation layer	Melamine foan	<2.22	<1.55	<7.94	Passed			
12	Cooling silicone oil	Silicone oil	< 0.33	< 0.42	<1.09	Passed			
13	Green oil (FEB)	Epoxy&resin	5.05±0.19	<0.87	<2.63				
14	Aramid PCB (no component	Aramid	1.01 ± 0.07	< 0.45	<1.24	Passed			
15	Bolt and nut for CS connecti	SS	< 0.46	< 0.51	<1.53	Passed			
16	CLS SS thread	SS	< 0.25	< 0.32	<0.95	Passed			
17	Bellow on acrylic sphere	SS	< 0.14	< 0.16	< 0.35	Passed			
18	O ring	Fluororubber	<0.91	<1.23	<3.14	Passed			
19	Cooling pipe clamp	SS	< 0.13	<0.16	<0.38	Passed			
20	SS cooling pipe	SS	< 0.91	<1.23	<3.14	Passed			
21	Feedthrought(all)	SS	< 0.27	< 0.34	<0.98	Passed			
	Ref: SS	SS	< 0.06	< 0.04	<0.2				

Electronics, Lab and Veto radioassay list

NO	N	3.6 4 1 1	n	D I		
NO.	Name	Material	K	Remark		
			U	Th	K	
1	Water tank (Veto)	SS	< 0.21	< 0.21	<0.60	Passed
2	Concrete near lab	Concrete	38.6±2.4	26.5±2.5	362.1±36.3	Normal
3	Concrete in lab	Concrete	134.4±3.6	135.4±3.6	1030±55	High
4	SiPM	Silicon	0.9±0.07	1.28 ± 0.10	<1.58	Passed
5	Connector-Samtec	hybrid	8.75±0.28	14.2±0.43	16.4±1.44	High
6	Connector-A	hybrid	5.23±0.45	6.39±0.59	<10.53	High
7	Connector-B	hybrid	<0.72	<0.92	<2.58	Passed
8	Capacitor-A	hybrid	42.43±1.13	1.7±0.2	<3.55	High
9	Capacitor-B	hybrid	3.32 ± 0.13	<0.65	<1.78	Passed
10	Resistor	hybrid	<0.43	< 0.50	<1.50	Passed
	Ref: SS	SS	<0.06	< 0.04	<0.2	

2. 缪反符合系统

◆ 顶部反符合塑闪 (TVT) by 中山大学

- ▶ 塑闪+ SiPM + 波移光纤
- ▶ >99% µ 标记效率 @ 64 p.e.
- ▶ 4-层塑闪, 160条, 2 m×20 cm×2 cm/条
 2.4m 衰减长度, 9000 ph/MeV, 光产额40~52p.e.
- ▶ 单端子4 只Sensl J-40035 SiPM, 共1320 只 光学硅油耦合(5 p.e.)
- ▶ 所有160条塑闪生产完成通过验收。
- ▶ 电子学和离线软件按计划推进,取得初步成效。

◆水箱 (WT)

- ▶ 3 个不规则水箱内外径2.7m/5.1m, 总48立方, ~300只
 3"PMT(DYB)。测试~5月密封水质,确定不做水循环;
- ▶ 水箱模型完成LED测试在进行加水测试
- ▶ 水箱设计完成,制造合同签定,开始生产

- ◆ 反符合电子学
- ▶ 水箱:同JUNO SPMT 电子学 (Catiroc)+GCU+TDAQ
- ➢ TVT: SiPM+FEB+GU+TDAQ

- 3. 刻度系统(Eur. Phys. J. C 82 (2022) 12, 1112)
- ◆ 自动刻度系统(大亚湾ACU改造), 沿Z轴, 刻度液闪中能量非线性
 ◆ ⁶⁸Ge (e+), ¹³⁷Cs + ⁵⁴Mn + ⁴⁰K + ⁶⁰Co + AmC (γ), 豁免源
 ◆ UV-LED (265nm, 波长可调, 模型实验测试, by MSU & JINR)
- ◆ 线缆回路刻度系统(CLS, 参考JUNO CLS), 偏Z轴

刻度不同位置液闪发光不均匀性

◆ ¹³⁷Cs (γ)

◆能量非线性< 0.6%, 不均匀性 < 0.2%.

Source Type		Radiation	Activity	
¹³⁷ Cs	γ	0.662 MeV	50	
⁵⁴ Mn	γ	0.835 MeV	50	
⁶⁰ Co	γ	1.173 MeV + 1.333 MeV	10	
⁴⁰ K	γ	1.461 MeV	10	
⁶⁸ Ge	e ⁺	annihilation 0.511 MeV + 0.511 MeV	500	
²⁴¹ Am- ¹³ C n, γ		neutron + 6.13 MeV (¹⁶ O*)	2 (neutron)	
$n(p, \gamma)d$	γ	2.22 MeV	2 (neutron)	

◆ 大部分源就绪,刻度系统在模型实验中已完成测试并优化。

三、SiPM和电子学

1. SiPMs 批量测试

- ▶ SiPM 单元(16ch): 滨淞s16080, 4051片测试完成,约180片DCR高已返厂
- ▶ 测试包括: 目测,老化测试,低温性能测试(-50℃)
- ➢ PDEavg: ~52.5%(>47%), OK; DCRmax: ~63(<100Hz/mm²), OK.
- ▶ ~0.3% 表面缺陷/单元; ~0.6% 老化测试电流异常;

~0.7% 性能测试不合格.

➤ SiPM 电源(by DUBNA JINR)

128 ch/module, 32 module, 4096ch 2 VME+control, 2 feedthroughs 系统就绪,全功率负载测试进行中

Charge Spectrum (LED Signal Range)

SiPM: SN-3393 CH-7 *Eg*: 0.366 ± 0.007 eV Aemo: 0.56 ± 0.17 MHz/(mm

Fit

Measured

2. SiPM 电子学(by INFN, ROMA-TRE-U)

- ▶ 最终方案: SiPM+FEB+FEC+(GU+CU)+TDAQ (CD)
- ▶ 2chs/单元, 共8048chs, 噪声<0.1 p.e.; 时间分辨<1ns.
- ▶ ADC: 250MHz/12bit, 2Vpp, 动态范围:1 180 p.e./ch
- ▶ 数据率: FEC→TDAQ: ~70 Gbps, TDAQ→Disk: ~100 Mbps
- ▶ 约100 套FEB完成模型实验。全部FEB和ADC板7月前完成(更换低放射性器件和连接器)。FEB表面涂环氧胶保护。
- ▶ 线缆:罐内差分模拟读出, 1.5 ~ 3.5 m三种长度, PTFE保护, 外部线缆长度~14m。
- ▶ 除了部分芯片和器件,大部分均为国产。

低放射性PCB(<0.25Bq/kg) 制作FEB

后端电子学架构详见 9日电子学分会张杰 报告。

supply ≈100V

LV FEB supply ±2V

Signal output

Differential pairs

max 128 channels

四、 低温液闪研制

1. 低温液闪配方(DOI: 10.1016/j.nima.2021.165459)

- ▶ 常规要求: 高光产额(>4000p.e/MeV)、高闪点(>100℃),高透过率(~93%)
- ▶ 低温要求:低水含量(<10ppm)、无析出、性能稳定@-50℃,
- ▶ 最终配方: LAB + 3 g/L PPO + 2 mg/L bis-MSB + 0.1%Gd + 0.5%DPnB
- ▶ DPnB(二丙二醇丁醚)有助溶质低温溶解,减少析出
- ▶ 氮气鼓泡除水可从~100ppm降到5~8 ppm。

2. 批量生产及灌装

- ▶ 3.5t LAB和3.3t LS配制完成,模型实验灌装及测试。
- ▶ N₂鼓泡除水(~15L/min) + 密封,达到8ppm水平。
- ▶ 采用蠕动泵、压力液位计、PTFE管实现洁净、密封、安全灌装

500

600

700

Wavelength [nm]

1. 目的

- ▶ 模拟部分台山现场限制条件,测试验证安装组装方案和关键步骤可行性(保证现场顺利完成安装)
- ▶ 测试验证低温系统, SiPM单元(~100), LS性能及灌装, 刻度系统, 电子学和DAQ等。

2. CD安装测试

- ➢ 验证并改进了所有关键步骤,如工装、铜壳翻转吊装,SiPM组装,穿墙法兰设计安装、布线,ACU安装、保温制作等).
- ▶ 在万级洁净间完成清洗和组装,所有接口漏率<5.0*10^-5 Pam3/s。

3. SiPM组装、布线、电子学测试

- > 试组装~100 真实SiPM单元和FEB,确定正式组装方案
 > 组装约1900片加热膜,和一套CCD相机和光源.
- ▶ 优化了线缆选型、长度、布线支撑方案
- ▶ 电子学调试噪声(制冷机是主要影响),完成宇宙线、Co源、 LED光源等测试。

4. 低温系统测试

- ▶ 测试验证保温结构及制作、低温系统控制及运行
- > 经过多轮升降温测试及不断改进制冷设备及保温,最终达到在2kW热负载下(模拟全部SiPM工作发热,0.5W/单元),空间温差±0.5℃指标(温差<0.7℃)。系统稳定性达到0.1℃。</p>
- ▶ 在制冷管管径、排布、硅油,以及法兰线缆保温避免结霜等 方面将做改善。

SiPM初步测试结果 5.

Co60测试结果 SiPM工作正常,得到PE Yield:4026±63

▶ 宇宙线测试结果 验证了批量低温液闪性能!

Moun自触发(350Hz)

低温液闪光产额随温度的变化

PMT R6233

PMT XP5382

PMT R609

-25 temperature[Degree]

Muon Spectrum Mean PE Va

H

LED不同PE波形的数目分布

基于LED时间谱对

LED测试结果

 \succ

CD重建: 似然法 (需改进),第一原则电荷模型 (较好)
TVT重建: 4模型,尝试利用机器学习,达到5~10cm分辨
LED产生子: 模拟LED光源,进行各向同性研究
事例显示: 基于ROOT,全探测器结构及击中(中山大学)

Machine learning method

The smallest sigma is also greater than 5 cm.

七、台山实验室改造

- ▶ 地址: 1#堆的1HW厅,地下9.6m,基线44m;现有实验厅需经水、电、气、网等改造才能投入使用
 ▶ 难点1:运输通道尺寸、吊装条件受到极大限制
- ▶ 难点2: 核电安全问题(增加消防系统和围堰,核级电缆,废液处理,用氮量限制等)
- ▶ 难点3:施工效率低(进入1小时,每天额外必要监管流程2小时,有效时间为平常的50%左右)
- ▶ 难点4:项目申请及审批周期长,推进难,2022年1月~2024年7月(台山核电→中广核→国家核安局)

实验室布局

Rack w/ temperature/humility control

经过两年多的努力,我们通过方案设计优化、模型实验验证、现场多次堪察、反 复多次多方讨论,基本解决了以上困难,现场运输和安装方案今年3月通过评审, 预计2024年7月进场安装。

八、总结

- ▶ 台山中微子实验将以2%@1MeV最好能量分辨精确测量反应堆中微子能谱。
- ▶ 通过1:1模型实验,全面验证了TAO的关键结构、安装组装方案、低温系统 及温度均匀性,电子学DAQ,SiPM和液闪性能等。
- ▶ 计划今年7月初现场安装,年底运行调试,2025年正式运行取数。

