

Overview of precise measurements of reactor neutrino oscillation parameters

Zhiyuan Chen On behalf of the Daya Bay collaboration Institute of High Energy Physics, CAS COUSP, May 8, 2024

Neutrino mixing matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solar v Oscillation
$$\sin^2 2\theta_{12} \sim 0.9$$

Solar v Oscillation
$$sin^2 2\theta_{12} \sim 0.9$$
 v_1
 v_2
 v_3 θ_{13} ?Atm. v Oscillation
 $sin^2 2\theta_{23} \sim 1$ v_3

- Key to complete the picture of the neutrino oscillation; a fundamental parameter of the standard model (SM)
- Important for future neutrino experiments: mass ordering and CP phase δ_{CP}
- Search for new physics beyond SM; test of leptonic unitarity

θ_{13} measurement in the past

Double Chooz: 1.7 σ

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041$ (stat.) ± 0.030 (sys.)

Challenges for θ_{13} measurement

Reactor antineutrino survival probability:

$$P_{\text{sur}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \qquad \Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{13} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

- Rate deficit by $\theta_{13} \sim 5\%$
- Precision of past experiments ~ 4%:
 - $\blacktriangleright \text{ Reactor related} \sim 3\%$
 - \blacktriangleright Detection related ~ 2%
 - ➢ Background ~ 2%

Same order of magnitude with rate deficit

Daya Bay experiment: concept

- Relative measurement (far over near) to cancel correlated systematic errors
 Multiple modules to reduce uncorrelated systematic errors
- Sensitivity goal of sin²2θ₁₃:
 0.01 @ 90% C.L.

Daya Bay: antineutrino detector (AD)

- 0.1% Gd-loaded liquid scintillator (GdLS) as target
- liquid scintillator (LS) as gamma catcher
- mineral oil (MO) as shielding

• Detect inverse β-decay reaction (IBD)

- Water pools provide shielding against cosmic-ray muons, secondary neutrons
- Providing a muon veto system via detection of Cherenkov light

Daya Bay: history of operation

- Detector commissioning on 15 August 2011
- Collection of physics data began on 24 Dec 2011
- Collection of physics data ended on 12 Dec 2020
- Decommissioning: 12 Dec 2020 31 Aug 2021

Daya Bay: IBD candidate selection

- Remove flashing PMT events
- Veto muon events
- Require 0.7 MeV $< E_{\text{prompt}} < 12$ MeV, 6 MeV $< E_{\text{delayed}} < 12$ MeV
- Neutron capture time: $1 \ \mu s < \Delta t < 200 \ \mu s$
- Multiplicity cut: select time-isolated energy pairs

Daya Bay: efficiency and uncertainty

Detection efficiency

	Efficiency	Correlated	Uncorrelated
Target protons	_	0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Prompt energy cut	99.8%	0.10%	0.01%
Multiplicity cut		0.02%	0.01%
Capture time cut	98.7%	0.12%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill in	104.9%	1.00%	0.02%
Live time	-	0.002%	0.01%
Combined	80.6%	1.93%	0.13%

Reactor-related

correlated		uncorrelated	uncorrelated		
energy/fission 0.2%		power	0.5%		
IBD reaction/fission 3%		fission fraction	0.6%		
	\frown	spent fuel	0.3%		
combined	3%	combined	0.8%		

From DYB, PRD 95, 072006 (2017)

Side-by-side comparison

Daya Bay: signal & background

	EH1/2		EH3	
	B/S	$\Delta B/S$	B/S	∆B/S
Accidentals	~1.4%	<0.01%	~4.5%	~0.04%
Fast neutron	~0.14%	~0.08%	~0.06%	~0.06%
⁸ He/ ⁹ Li	~0.4%	~0.2%	~0.2%	~0.15%
Am-C	~0.03%	~0.03%	~0.28%	~0.28%
¹³ C(α,n) ¹⁶ O	~0.01%	<0.01%	~0.04%	~0.02%
Sum	1.9%	0.22%	5.1%	0.3%

Daya Bay: latest oscillation results

Best-fit results:

 $\sin^2 2\theta_{13} = 0.0851^{+0.0024}_{-0.0024}$

Normal ordering (NO):

(2.8% precision)

 $\Delta m_{32}^2 = +(2.466^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.4% precision)

Inverted ordering (IO):

 $\Delta m_{32}^2 = -(2.571^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.3% precision) $\chi^2/\text{ndf} = 559/518$

$\sin^2 2\theta_{13}$

Daya Bay: neutron capture on H

- Oscillation analysis via neutron capture on H provides powerful cross check
 - Statistically independent on neutron capture via Gd
- Secondary precise results in the world in the next twenty years
- Latest results using 621-days data:

 $\sin^2 2\theta_{13} = 0.071 \pm 0.011$ $\chi^2/\text{NDF} = 6.3/6$

- Updated results with larger statistics exploiting rate deficit and shape distortion are under way
- Combined analysis of nGd and nH is in process

From DYB, PRD 93, 072011 (2016)

Double Chooz

- Relative measurement
- Reactor power ~ $8.5 \text{ GW}_{\text{th}}$
- Baseline for far hall $\sim 1050 \text{ m}$
- Overburden: near ~ 30 m, far ~ 100 m
- Only one modular in each hall
- Reactor-off mode (17 days): constrain bkg. better
- Analysis with nH, nC an nGd
- Best-fit with full data set:

 $\sin^2 2\theta_{13} = 0.105 \pm 0.014$ $\chi^2/\text{NDF} = 182/112$

(13% precision)

From Double Chooz, Nat. Phys. 16, 558 (2020)

RENO

- Relative measurement
- Reactor power ~ $16.5 \text{ GW}_{\text{th}}$
- Baseline for far hall ~ 1380 m
- Overburden: near ~ 120 m, far ~
 450 m
- Only one modular in each hall
- Three optically coupled volumes
- Best-fit with full data set:

 $\sin^2 2\theta_{13} = 0.0896 \pm 0.0068$ $\chi^2/\text{NDF} = 47.4/66$

(7.6% precision)

From RENO, PRL 121, 201801 (2018)

14

Future measurement: JUNO

• Mian goal: determine neutrino mass ordering

	Central Value	PDG2020	100 days	6 years	20 years
$\sin^2 \theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)	±0.0016 (7.3%)

From JUNO, CPC 46, 123001 (2022)

Future measurement: DUNE

From DUNE, JINST 15, T08008 (2020)

- Detect accelerator neutrino
- Liquid argon TPC
- 40 kton fiducial mass
- Baseline: 1300 km

Goal:

- a) Measure δ_{CP}
- b) Determine neutrino mass ordering
- c) Measure other oscillation parameters including θ_{13} with precision similar to the reactor neutrino experiments (~6.3% precision@1104 kt·MW·years)

Future measurement: SuperChooz

• Invitation of sub-percent precise measurement:

- Unitarity test of PMNS matrix
- Reduce phase space of other experiments: 0vbb, δ_{CP} , ...

LiquidO detector

- > Vertex reconstruction $\sim 1 \text{ cm}$
- > PID: e^+ , e^- , γ
- Tracking, directional
- Thermal power ~ 8.4 GW
- Near-far measurement
- Under exploration

potential: reduce overburden/shielding

ktons × years 10-2 10-1 sin²2 θ_{13} sensitivity at 1 σ_{e^0} 10 ε_{e^0} 11 σ_{e^0} 10 ε_{e^0} 11 σ_{e^0} 10 ε_{e^0} 1 ~5years x Ikton: ~1.0% precision Rate Only, 0.10% De Shape Only 10-2 R+S, 0.10% Det 10years x 10kton: order 0.1% precision ~1.0% δ(detection)~0.1 sub-percent region -0.1% 10-4 today's reactor-013 statistics only 10-5 104 10⁵ 10⁶ 107 10⁸ 10⁹ **Events on Far Site**

From A. Cabrera, Neutrino2022

Future measurement: others

- Single detector
- Liquid scintillator
- Baseline ~ 2 km
 - Offset the baseline from the oscillation maximum
- Luminosity ~ 150 kton · GW · year
 - Mass ~ 4 ktons
 - ➢ Reactor power ~ 9.2 GW
 - Data taking ~ 4 years
- Energy resolution ~ 10%
- Shape error is dominated

From J. N. Zhang and J. Cao, JHEP 03 (2023), 072 18

The Daya Bay collaboration

Thank you!

Daya Bay: energy calibration

NIM A940 (2019) 230

8

FEE charge [p.e.]

• Data

Total ----- 12B

12 14 16 Reconstructed energy [MeV]

Best fit model

......¹²N: 2.8%

6

10

10

Daya Bay: event reconstruction

• Reconstruction of event energy:

$$E_{\rm rec} = \left(\sum_{i} \frac{Q_i}{\bar{Q}_i^{\rm SPE}(t)}\right) \frac{f_{\rm act}(t)}{N^{\rm PE}(t)} f_{\rm pos}(\mathbf{r}_{\rm rec}, t),$$

• Non-uniformity of energy response

• Energy resolution:

• Study of relative energy scale error

 $+\frac{c^2}{E_{rec}^2}$. a = 0.016, b = 0.081 MeV^{1/2}, and c = 0.026 MeV ~ 8.7% @ 1 MeV

From DYB, PRD 2017 22