

MigdAl pRocess Validation by nEutruaL scattering

University of Chinese Academy of Sciences

Difan Yi

on behalf of MARVEL group May 9, 2024 Xichang, Si Chuan

Outline

- Motivation
- MARVEL experiment proposal
- Simulation & reconstruction
- Background analysis
- Summary and outlook

The Migdal effect?

*Particle Avenues in the Dark Universe Arena (PADUA): Light dark sectors, 6 September 2023

Sub-GeV searches increasingly dominated by Migdal

Pre-2018 No Migdal limits Migdal effect in dark matter direct detection experiments, Ibe et al arXiv:1707.07258 Today Dominated by Migdal

The Migdal effect?

Predicted by A.Migdal date back to the 1940s

Predicted effect in:

1. α , β decay

2. Neutral scattering

Haven't been oberved in Neutral scattering Migdal electron haven't been oberved directly

periods.

Proposed MIGDAL experiment

MARVEL experiment

- Mixture of dimethyl ether(DME,C₂H₆O) and helium gas at 1 atm
 - High efficency
 - Iow diffusion coefficient
 - relativly long electron track
- Gas Microchannel Plate(GMCP) amplification
 - ➢ High gain upto~10⁴
 - ➢ Fine granularity
 - Stable gain coefficient
- Topmetal Charge-sensitive chip imaging
 - Fine granularity
 - ➢ High resolution

Working principle

GMCP:

- 50 um diameter, 60 um pitch •
- High energy resolution ٠
- Stable gain coefficient ٠

noise 13.9e-•

GMCP

Topmetal-II

Detector Calibration

Position resolution:

Simulation Framework

• Motivation:

Establish a framework for Migdal electron and Ion measurement simulation and offline data analysis

- ✓ Simulate Migdal effect interaction with detector
- Simulate different interaction
- Provide energy deposit
- ✓ Analog detector digital readout
- Simulate electron drifts, multiplies, collected procession
- Output file for data analysis and reconstruction algorithm

Detector modeling

Track simulation

Simulation

13

- The cross sections for nuclear interaction and electromagnetic interaction are from Geant4
- The theoretical Migdal cross sections for Ar/C/F/Ge/He/Kr/Ne/Si/Xe nuclei are available.

Digitization

The consistency with experimental data nicely

A simulation example

Reconstruction& Selection

BTNK1: C, W, C1, S

CONV: 3×3. CL /1

 ResNet50 neural network trained based on simulated data for Migdal instance identification.

(512, 28, 28)

BTNK2: 512, 28

(512, 28, 28)

(3. 224, 224)

¥ CONV: 7×7, 64, /2 BN, RELU

AXPOOL: 3×3, /2

STAGE 0

STAGE 3

BTNK1: 512, 28, 256,

(1024, 14, 14)

BTNK2: 1024, 14

 A few keV electrons and recoiling nuclei bear distinguished features in circularity and dE/dx.

Backgrounds Analysis

Backgrounds in 1 million neuclear recoil events

Background Component	Description	>0.5 keV	5keV-15keV
Recoil induced δ ray	δ electron near (200 μ m) NR track origin	1.4×10^{3}	≈ 0
Particle-Induced X-ray Emission (PIXE)			
X-ray emission	Photoelectron near NR track origin	0.3	0
Auger electrons	Auger electron near NR track origin	3.1×10^{3}	0
Bremsstrahlung processes			
Quasi-Free Electron (QFEB)	Photoelectron near NR track origin	4	≈ 0
Secondary Electron (SEB)	Photoelectron near NR track origin	1.3	≈ 0
Atomic (AB)	Photoelectron near NR track origin		≈ 0
Nuclear (NB)	Photoelectron near NR track origin		≈ 0
Neutron inelastic γ -rays			
Compton Electron	Compton electron near NR track origin	2.1	$(3.3 \pm 0.37) \times 10^{-1}$
Photoelectron	Photoelectron near NR track origin	4.2	≈ 0
Random track coincidences	Photo-/Compton electron near NR track	-	$(1.7\pm0.11) imes10^{-2}$
Muon induced δ ray	δ electron near NR track origin	10	$(7.0 \pm 0.71) imes 10^{-1}$
Gas radioactivity			
Trace contaminants	Electron from decay near NR track origin	0.91	$(1.8\pm 0.2) imes 10^{-2}$
Neutron activation	Electron from decay near NR track origin	-	≈ 0
Secondary nuclear recoil fork	NR track fork near track origin	-	≈ 0
Total background		4.6×10^{3}	1.1 ± 0.080

Theoretical Migdal electron > 5keV probably: ~ O(10⁻⁵) tens of Migdal electron should be found per million

Pre-test & Placement

Track Imaging

- The Migdal effect plays a very important role in light dark matter research.
- However this effect has not been observed with the neutral projectile.
- Many experiments have been proposed.
- The capability of the GMCP detector to measure the Migdal effect is being discussed.
- Simulation and reconstruction is ready.
- Background analysis has been done.
- More work is currently in progress.

Experiment is ready, Looking forward to results!

Thanks for your attention!