

Recent Dark Matter combination summary and Dark Higgs searches from ATLAS

李数 <u>shuli@sjtu.edu.cn</u> 09/05/2024

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 @ 西昌

• LHC primary goals: looking into the "unknowns"

Dark Matter Evidence and Theory Context in a nutshell

- DM evidence from astronomical observations and gravitational effects:
 - Galactic rotation curves, Gravitational lensing, Cosmic Microwave Background anisotropies, ...
- Characteristics: Non-baryonic, massive, electrically neutral, gravitational, stable → WIMP context
- BSM models predict weakly interacting massive particle (WIMP) -> Dark Matter Candidate. In SUSY
 models, the lightest SUSY particle LSP is a candidate for dark matter. Being LSP stable in most Models.
- Any WIMP DM produced at collider experiments will interact weakly and pass invisibly through detectors. Inferred through 'Missing E_T' when event does not balance in plane transverse to beam.
 Particle and Nuclear Physics Division 粒子与核物理研究部

Frontiers that DM can reach out

Dark Matter Direct Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XENONnT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Indirect Detections

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XENONnT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

Dark Matter Collider productions

- Direct Detection (DD): nuclear recoils from DM-nuclei scattering (CDEX, PandaX, LZ, XENONnT, ...)
- Indirect Detection (ID): products from DM annihilation (DAMPE, HESS, IceCube, ..)
- Colliders: DM production in high-energy collisions, focusing on the productions of a SM particle(s) (X) with large missing E_T

The ATLAS Experiment

ATLAS Detector System

Dark Matter Models for LHC

S-channel Mediator Simplified Models

Simplified model:

- Starting point to build complete theories
- Colliders can search for the mediator directly
- Benchmark model @ Run II

Two complementary approaches:

- Look for DM mono-X signature
- Look for mediator resonance search

Dark Matter Search programs at LHC

part 01

Recent Dark Matter Combination Summary from ATLAS in the context of 2HDM+a

TSUNG-DAO LEE INSTITUTE

2HDM+a context

<u>arXiv:2306.00641</u> (Science Bulletin Accepted)

• One of the popular ATLAS DM benchmark context

2HDM+a fully defined by 14 parameters

 $v, M_h, M_A, M_H, M_{H^{\pm}}, M_a, m_{\gamma}$

 $\cos(\beta - \alpha), \tan\beta, \sin\theta,$

 $y_{\chi}, \lambda_3, \lambda_{P1}, \lambda_{P_2}$

• Searches interpreted in Two-Higgs-Doublet Model plus a pseudo-scalar mediator (2HDM+a):

EWK, flavour constraints and to simplify parameter space

- Minimal, UV-complete extension.
- EWK Symmetry Breaking:
 - 5 Higgs: h, H, H[±], A
 - 1 light pseudo-scalar: a

• 2HDM+a Experimental Signatures at ATLAS (Science Bulletin Accepted)

- 2HDM+a has rich phenomenology predicting wide range of signatures with both visible and invisible decays
 - resonant production of $E_T^{miss} + Z/h$
 - additional (pseudo-)scalar bosons, e.g. tbH[±](tb)
 - new signatures, e.g. E_T^{miss} +tW

P

物堆研究剖

 $tbH^{\pm}(tb)$

arXiv:2306.00641

 $E_{\rm T}^{\rm miss} + tW$

 $h \rightarrow aa \rightarrow 4f/h \rightarrow \text{invisible}$

Statistical Combination

<u>arXiv:2306.00641</u> <u>(Science Bulletin Accepted)</u>

- $E_{\rm T}^{\rm miss} + h(bb)$, $E_{\rm T}^{\rm miss} + Z(ll)$ and $tbH^{\pm}(tb)$: Most constraining signatures of 2HDM+a.
 - $tbH^{\pm}(tb)$ gives significant complementarity to sensitivities of $E_{T}^{miss} + X$
 - stat. combination of 3 channels to maximize 2HDM+a constraints in parameter space.
- Combined exclusion limits obtained from profile likelihood ratio corresponding to 3-channel-combined likelihood.
- Decorrelate over-constrained/pulled uncertainties to avoid any phase-space-specific biases across channels.

Summary of constraints on 2HDM+a

P

- constraints on 2HDM+a interpreted in 6 benchmark scenarios.
 - highlight diverse phenomenology of 2HDM+a.
 - study the interplay and complementarities between different signatures.

Summary of constraints on 2HDM+a

	Δ									Δ
Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\mathrm{T}}^{\mathrm{miss}} + Z(\ell \ell)$ [74]	x	х	х	x	x	x	x	x	x	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$ [75]	х	х	x	x	x	x	x	x	х	х
$E_{\rm T}^{\rm miss} + h(\gamma\gamma) \ [84]$	х	х			x	x	x	x		
$E_{\mathrm{T}}^{\mathrm{miss}} + h(\tau\tau)$ [78]	х			х						
$E_{\mathrm{T}}^{\mathrm{miss}} + tW$ [77]	x	x	x	x	х	x	x	x		
$E_{\rm T}^{\rm miss} + j [45]$	х	x			х	х	х	х		
$h \rightarrow \text{invisible} [86]$	х	х			х					х
$E_{\mathrm{T}}^{\mathrm{miss}} + Z(q\bar{q}) \ [127]$	x						x	x		
$E_{\mathrm{T}}^{\mathrm{miss}} + b\bar{b}$ [128]							x	x		
$E_{\rm T}^{\rm miss} + t\bar{t} \ [128, 129]$							x	x		
$t\bar{t}t\bar{t}$ [85]	х	х	х	х	х	х	х	х	х	
$tbH^{\pm}(tb)$ [76]	x	x	x	x	x	x	x	x	х	
$h \to aa \to f\bar{f}f'f'$ [79,80,81,82,83]										x
	$\mathbf{\nabla}$									\forall

Variety of searches interpreted in the context of different 2HDM+a benchmark scenarios

• $h \rightarrow$ invisible constrains very low m_a .

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss}$ + Z and $E_{\rm T}^{\rm miss}$ + h.

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \to bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss}$ + Z and $E_{\rm T}^{\rm miss}$ + h.
- Complementary constraints from searches not targeting DM.

Sensitivity of 2HDM+a driven by the combination.

(Science Bulletin Accepted) • Scenario 1a: $\sin\theta = 0.35$, $m_A - m_a$ plane

- $h \rightarrow$ invisible constrains very low m_a .
- constraints from $E_{\rm T}^{\rm miss}$ + *h* signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.
- $E_{\rm T}^{\rm miss} + tW$ similar to $E_{\rm T}^{\rm miss} + Z(ll)$ but with smaller excl. region.
- $E_{\rm T}^{\rm miss}$ + jet sensitivity notably different from those of $E_{\rm T}^{\rm miss} + Z$ and $E_{\rm T}^{\rm miss} + h$.
- Complementary constraints from searches not targeting DM.

arXiv:2306.00641

• Scenario 6: $m_a - m_{\chi}$ plane

- New interpretation in $m_a m_{\chi}$ plane:
- Searches for SM Higgs decaying to 4 fermions via constrain previously unprobed region of 2HDM+a.

arXiv:2306.00641

(Science Bulletin Accepted)

• Complementarity to $h \rightarrow inv$. and $E_T^{miss} + h(bb)$ searches.

PART 02

(Recent) Dark Higgs Searches

TSUNG-DAO LEE INSTITUTE

子与核物理研究部

● Dark Higgs Search: Mono-S(→WW) semileptonic<u>JHEP 07 (2023) 116</u> PRL 126 (2021) 121802

- Two mediator model: Z' + Dark Higgs
- Utilize both resolved calorimeter-measured jet pair or merged from track-assisted reclustered jets
- Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

● NEW Dark Higgs Search: Mono-S(→bb)

$$\mathcal{L}_{\chi} = -\frac{1}{2} g_{\chi} Z^{\prime \mu} \bar{\chi} \gamma^5 \gamma_{\mu} \chi - g_{\chi} \frac{m_{\chi}}{m_{Z^{\prime}}} s \bar{\chi} \chi + 2 g_{\chi} Z^{\prime \mu} Z^{\prime}_{\mu} \left(g_{\chi} s^2 + m_{Z^{\prime}} s \right)$$

ATLAS-CONF-2024-004

- Dark Higgs boson (scalar particle s) introduced together with Z' and Majorana DM [Ref. JHEP 04 (2017) 143]
- New annihilation channel to SM opened up (χχ→s→...): relax the constraint from cosmology → Prevent DM Relic Density (Ωh²) over-production issue of common WIMP model
- Scalar particle mixing with SM Higgs: detectable decay products depending on mass, s→VV, s→bb
- Done Searches for high mass dark Higgs in Mono-S(VV) analyses (previous slide)

First search aiming for a low-mass dark Higgs boson + new benchmark scenarios

● NEW Dark Higgs Search: Mono-S(→bb)

	Parameter	Explain
 Six parameters controlling the interaction with SM and DM 	m _s	mass of dark higgs
 Fixed-gχ search as benchmark (scenario 1) Scan mS v.s. mZ' with fixed mχ = 200 GeV, 	m_{χ}	mass of DM to search
 • Cosmological constraint: freeze-out relic 	$m_{z'}$	mass of heavy mediator
 density Ωh² Observation from PLANCK2018: Ωh² = 0.1200 ± 0.0012 	${oldsymbol{g}}_{\chi}$	coupling in dark sector between s, X, Z'
 Introduce two new benchmark scenarios [First time!] satisfying the observed relic density 	${oldsymbol g}_q$	coupling with SM: q<->Z' fixed 0.25 as benchmark
• Scan mS v.s. mZ' with fixed m χ =900 GeV • Scan m χ v.s. mZ' with fixed mS=70 GeV	θ	mixing angle of SM Higgs<->dark Higgs fixed according to [1]

[1] *JHEP 04 (2017) 143*

• **NEW** Dark Higgs Search: Mono- $S(\rightarrow bb)$

Analysis Strategy overview

亥物理研究剖

- Search for low mass dark Higgs with bb+MET signature
- Data triggered with MET and search starts from 150GeV
- Regions divided by MET: from resolved to merged topology to cover all the interesting phase space

Resolved regions: reconstructed by 2 small-R jets and tagged using DLIr 77%

Merged region: I reclustering large-R jet and mixed tagging methods \rightarrow benefit from advanced techniques

Resolved Topo.

150 < MET < 500 GeV

s

ATLAS-CONF-2024-004

MET

ATLAS-CONF-2024-004

Mono-S(bb) Exclusion Limit: relic-density inspired scenario

DM coupling varies to satisfy the observed relic density throughout

- mZ' excluded up to 4.1 TeV with fixed m χ at 900GeV (scenario2)
- mZ' excluded up to the perturbative limit and m χ excl. to 1TeV at mS=70GeV (scenario3)

First LHC dark Higgs search in cosmology coherent context

Event Display

Signal-like event in resolved region: $E_T^{miss} = 559.5 \text{GeV}$, m(J) = 53.8 GeV, $p_T(J) = 486.9 \text{GeV}$

PART 03

Dark Photon Search and Combination Prospect at ATLAS

TSUNG-DAO LEE INSTITUTE

● Dark Higgs → more Dark Portals connecting hidden sectors

- Dark Photon BSM extensions:
 - U(1) extension of the SM
 - Hidden gauge boson A' → kinetic mixing (ε) with the SM photon
 - the magnitude of ε affects production rate and lifetime

- Vector portal dark photons
- Scalar portals dark Higgs
- Neutrino portal
- Axion portal

Dark Photon searches: ZH and VBF

粒子与核物理研究部

ATLAS Dark Photon Combination Prospects

- Combination of VBF and ZH channels for SM Higgs (125 GeV) decaying into photon and massless dark photon
- Combination of VBF and ATLAS mono-photon re-interpretation for heavy Higgs decaying into photon and massless dark photon. (Our ongoing work)

Production	ZH	VBF	Combined		
ATLAS	2.3(2.8)%	1.8(1.7)%	Our ongoing work		
CMS	4.6(3.6)%	3.5(2.8)%	2.9(2.1)%		

Summary

- $b\bar{b}$ +DM $t/\bar{t}+DM$ $t\bar{t}$ +DM \mathbf{ZH} (mono-Z) heavy resonance VBF Higgs Invisible visible jets ggH (mono-jet Dark Matter mono-je and ATLAS $VV \rightarrow 4$ Dark Higgs mono-Z $WW \rightarrow$ $2l2\nu$ mono Dark Photo mono- $ZZ \rightarrow 4l$ Higgs $H \rightarrow \gamma_D \gamma$ $H \rightarrow \gamma_D \gamma$ Dark matter searches at CMS and ATLAS (VBF) (ZH)D Perez Adan - 2022
- LHC continues to deliver highly valuable physical results while Run-3 is started with new results in the pipeline
- Dark Matter mystery remains puzzling while collider searches provide sensitivity complementarity with noncollider DM searches
- Many hypotheses, diverse processes and signatures are broadly surveyed and searched for but by far no hints of Dark Matter
- Need to further diversify the data mining aspects in the collisions covering more unconventional signatures and untouched stones

