

Dark Photon Study at BESII

Yuping Guo (郭玉萍) on behalf of BESIII Collaboration

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 Conference on frontiers of underground and space particle physics and cosmophysics 2024年5月7日-11日,四川西昌

Dark Sector

- \bigcirc
- Weakly coupled to visible sector through a mediator or "portal"

Portal	Operator
Dark photon (Spin 1)	$\frac{\epsilon}{2}F_{\mu\nu}F^{\prime\mu\nu}$
Axion (Spin 0)	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{f_a}\partial_{\mu\nu}$
Scalar (Spin 0)	$(\mu S + \lambda S^2)H$
Sterile neutrino (Spin 1/2)	$y_N \bar{L} H N$
	arXiv:20

Consisting of (light) particles do not interact with the known strong, weak, or electromagnetic forces

ctor	Dark sectors beyond Dark Matter
	In fact, beyond the DM motivation, many other open problems in particle physics let us think about dark particles.
	 Models to address the strong CP problem. Axions and axion-like particles; Models to address the gauge hierarchy problem (relaxion);
rs	 SUSY extended models (Next-to-Minimal-Supersymmetric-Standard-Model); Models for baryogengesis;
	 Models for neutrino mass generation; Models addressing anomalies in data;
$\bar{\psi}\gamma^{\mu}\gamma_5\psi$	((g-2) _{μ} , galactic center excess for Dark Matter, B-physics anomalies,).
,	Some of these particles are naturally light thanks to approximate global symmetries.
Γ [†] Η	From a phenomenological point of view, the signatures to search for are often similar S.Gori
)05.01515v3 [hep-ph]	Borrowed from S. Gori, Dark Sector at Snowmass
	HPS Collaboration Meeting, Nov.6, 2022

Dark Photon

- New Abelian gauge group U(1) force carrier
- Kinetic mixing with SM U(1) with mixing coefficient ϵ B. Holdom, PLB 166,196 (1986)
- Typical mix strength: $10^{-2} 10^{-5}$, could be smaller
- Expected mass scale: MeV/ c^2 -GeV/ c^2 , can be accessible by high intensity e^+e^- collider experiments
- Massless dark photon and massive dark photon \bigcirc
 - Massless kind: does not couple directly to any of the SM currents and interacts with ordinary matter only through operators of dimension higher than four
 - Massive kind: couples to ordinary matter through a current

BEPCII and BESIII

Solenoid Magnet: 0.9/1.0 T

MUC $\sigma_{R\Phi}$: 2 cm

TOF

σ_T:80 ps 110 ps (60 ps)

MDC

dE/dx: 6% σ_p /p: 0.5% at 1GeV/c_

EMC

∆E/E: at 1GeV 2.5% 5.0% σ_{z} : 0.6 cm/ \sqrt{E}

BESIII Data Samples

+ 10 Billion J/ψ , 2.7 Billion ψ (3686), 20 fb⁻¹ ψ (3770)

Dark Photon Studies at BESII

 Massive 	e dark photo	on	
• $e^+e^- \rightarrow$	$\gamma \gamma', \gamma' \rightarrow l^+ l^-$		PLB774, 252 (2017)
• $J/\psi \to d$	$\gamma'\eta,\gamma' ightarrow e^+e^-$		PRD99, 012006 (2019)
• $J/\psi \to d$	$\gamma'\eta', \gamma' \to e^+e^-$		PRD99, 012013 (2019)
• $e^+e^- \rightarrow$	$\gamma \gamma', \gamma \rightarrow \text{invisi}$	ible	PLB839, 137785 (2023)
• $J/\psi \to \gamma$	$\gamma'\eta',\gamma' o\gamma\pi^0$		PRD102, 052005 (2022), not included
 Massle 	ss dark pho [.]	ton in	hyperon decays
• $\Lambda_c \to p$	+invisible	PRD106,	072008 (2002)
• $\Sigma \to p -$	Finvisible	PLB852,	138614 (2024)

d in this talk

- $e^+e^- \rightarrow \gamma_{\rm ISR}\gamma', \gamma' \rightarrow l^+l^-$, based on 2.93 fb⁻¹ data sample taken at $\psi(3770)$, untagged method

- Cover mass region: 1.5 GeV/ c^2 to 3.4 GeV/ c^2
 - <1.5 GeV/ c^2 : $\pi^+\pi^-$ background dominant

• >3.4 GeV/ c^2 : hadronic $q\bar{q}$ background dominant

- Number of signal events determined by fitting the $M(l^+l^-)$ distribution, combined statistical significance less then 3σ in the explored mass region
- 90% confidence level limit obtained with profile likelihood approach with systematic uncertainty included
- Kinetic mixing parameter ϵ determined with

Yuping Guo (Fudan University) @ COUSP2024 西昌

8

Kinetic Mixing Coefficient ϵ

Yuping Guo (Fudan University) @ COUSP2024 西昌

Larger $\psi(3770)$ (2.93 \Rightarrow 20 fb⁻¹) and J/ψ (1 billion \Rightarrow 10 billion) data sample already collected

Massive Dark Photon Decays to Invisible

- Based on 14.9 fb⁻¹ data sample taken at $\sqrt{s} = 4.13 4.60$ GeV
- Dark photon candidate would be signified by the presence of a the monochromatic photon $E_{\gamma} = \frac{s - m_{\gamma'}^2}{2\sqrt{s}}$
- $E(\gamma) < 1.3$ GeV discarded due to low trigger efficiency
- Maximum local significance: 3.1σ at $m_{\gamma'} = 2.6 \text{ GeV}/c^2$

Yuping Guo (Fudan University) @ COUSP2024 西昌

Ψ

 10^{-4}

10⁻⁵

10⁻³

NA64

10⁻²

10⁻¹

 $m_{\gamma'}$ (GeV)

BESI

BaBar

Massless Dark Photon in Λ_c **Decays**

- operators generated by loop diagrams
 - May enhance the branching fractions of flavor changing neutral current (FCNC) decays
- Based on 4.5 fb⁻¹ data sample at $\sqrt{s} = 4.6 4.7$ GeV

• The massless dark photon is a gauge boson associated with a new unbroken U(1)_d symmetry

B. Holdom, PLB 166,196 (1986)

B. A. Dobrescu, PRL94, 151802 (2005)

Do not interact with SM particle directly, but can exert influence on the SM via higher-dimensional

Massless Dark Photon in Σ Decays

- Based on 10 billion J/ψ events, about 4 million tagged Σ^\pm using $p\pi^0$ mode
- In search for massless dark photon, QCD axion, ...

•
$$B_{\rm sig} = \frac{N_{\rm DT}^{\rm obs}/\epsilon_{\rm DT}}{N_{\rm ST}^{\rm obs}/\epsilon_{\rm ST}}$$

- DT signal extracted from the missing energy, defined as $E_{\text{extra}} = E_{\text{extra}}^{\text{DT}\pi^0/\gamma} + E_{\text{extra}}^{\text{other}}$
 - $E_{\text{extra}}^{\text{DT}\pi^0/\gamma}$ expected to be 0 for signal events
 - $E_{\text{extra}}^{\text{other}}$: 93% contribution from interaction between the \bar{p} and the detector, determined using data-driven approach

•
$$B(\Sigma^+ \rightarrow p + \text{invisible}) < 3.2 \times 10^{-5}$$

PLB852, 138614 (2024)

Summary

- bot visible and invisible decays
- \bigcirc better mass resolution
- on part of the data samples
- More results to be expected in the near future, with larger data samples

Electron-Positron colliders provide clean environment for the study of particles beyond SM, in

BESIII works on tau-charm energy region, can probe lower mass region, and can provide

• Massive and massless dark photon has been studied in visible or invisible final states, based

