

中国锦屏地下实验室

China Jinping Underground Laboratory

# Virtual Segmentation of a Small Contact HPGe Detector

Wenhan Dai

Department of Engineering Physics, Tsinghua University

2024/05/09

中国暗物质实验 China Dark matter EXperime

- I. Introduction
- II. Select Inner/Outer Layer Event via PSA
- III. Determine Inner/Outer Layer Shape & Volume
- **IV. Background Suppression by Virtual Segmentation**
- V. Summary

## I. Introduction

### **Search Ge-76 0vββ decay with HPGe detector:**

0vββ experiment requires *Extreme Low Background* ("0" Background in ROI for HPGe) Small contact HPGe detector has *Pulse Shape Analysis (PSA)* for Background Suppression

> Identify Signal & Background by pulse shape features originating from their spatial difference



### **Discrimination between SSE / MSE:**

A/E method identifies single/multiple hits using different drift times of the induced charge carriers



### **Idea of Virtual Segmentation:**

*<u>Hit position</u>* of SSE determines the *drift time* of induced charge carriers and its *pulse shape* 

Virtual Segmentation: Determine SSE position by Pulse Shape Analysis



### **Idea of Virtual Segmentation:**

- *①* Identify SSE position by Pulse Shape Analysis
- *②* Determine the Shape and Volume of the inner and outer layers by calibration



#### Study on a single-readout BEGe detector:

- $\succ$  Crystal size: 80 mm  $\times$  42.6 mm ( $\Phi \times H$ )
- Inactive layer thickness: 0.87±0.67 mm  $\succ$

p+ contact

n+ contact /

Ge Crystal

**Inactive layer** 

Sensitive volume

Groove

Sensitive volume (mass):  $197.98 \pm 0.76 \text{ cm}^3$  ( $1052.3 \pm 4.0 \text{ g}$ ) 





Crystal

Cryostat

**Crystal Holder** 

## II. Select Inner/Outer Layer SSE via PSA

### **Pulse Shape Parameters:**

Three parameters (A, T<sub>Q</sub>, T<sub>I</sub>) are used to discriminate SSE/MSE & Inner/Outer Layer events



## Select Inner/Outer Layer SSE via PSA

### **Select SSEs by A/E method:**

Cut determined by <u>Double Escape Peak (DEP)</u> events in Th-228 data:  $(A/E)_{SSE} > \mu_{DEP} - 5\sigma_{DEP}$ 

> 80% survival for DEP events (SSE) and 9% survival for SEP events (MSE)



## Select Inner/Outer Layer SSE via PSA

### □ (T<sub>Q</sub>, T<sub>I</sub>) Distribution for Inner & Outer Layer SSEs:

The Linear & Nonlinear relation between T<sub>Q</sub> & T<sub>I</sub> separates the Inner & Outer SSEs

- $\succ$   $T_Q \& T_I$  are both **proportional to charge carrier drift distance** for inner layer SSEs
- > Charge/current signal do not exceed  $T_{Q}$ ,  $T_{I}$  threshold when charge carriers drift in Outer layer



## Select Inner/Outer Layer SSE via PSA

### Discriminate Inner / Outer SSEs via Linearity index:

Linearity index between  $T_Q$  and  $T_I$ :  $L = T_I - (k \cdot T_Q + b)$ 

> Parameters k and b are fitted using <u>typical linear events</u>:  $T_1 = k \times T_Q + b$ 



### Pulse Shape Simulation (PSS):

Inner layer Shape & Volume heavily rely on the *crystal impurity profile* 

> As precise impurity profile not known, Inner/Outer Layer is calibrated experimentally



### **Calibrate Inner/Outer Layer using Th-228 DEP Data:**

$$R_{L} = \iint M(r, z | \theta) \cdot F_{DEP}(r, z) dr dz$$

- ① Parameterized segment model *M(θ)*: 8 points, 14 parameters
- 2 Inner layer event ratio ( $R_L$ ) in Th-228 scanning experiments: 19 positions on Top & Side
- ③ SSE spatial PDF ( $F_{DEP}$ ): calculate via Geant4 simulation



#### Measure R<sub>1</sub> for different source positions:

Linear events in background data

#### *t<sub>s</sub>: source measure time* t<sub>B</sub>: background measure time

 $R_{L} = \frac{N_{L,S} - N_{L,B} \cdot t_{S}/t_{B}}{N_{T,S} - N_{T,B} \cdot t_{S}/t_{R}}$ Total events in Th-228 data

Linear events in Th-228 data

Total events in background data



### **Gimulate Spatial PDF:**

- Detailed detector model in Geant4
- Simulate energy deposition of DEP events
- > Parameter  $\delta_D$  to remove MSEs in simulation

$$R_{L,M}(\theta) = \iint M(r, z \mid \theta) F_{DEP}(r, z) \, dr dz$$
$$M(r, z \mid \theta) = \begin{cases} 1 & (r, z) \in \text{Inner Layer} \\ 0 & (r, z) \in \text{Outer Layer} \end{cases}$$





**Uncertainty Assessment:** 

Inner layer in sensitive volume =

47.2% ± 0.26% (stat.) ± 0.22% (datasets) ± 0.18% (Inactive.)

> 3000 times toy-Monte Carlo sampling  $\rightarrow$  (±0.26%)

#### Systematic uncertainty:

**Statistic uncertainty:** 

- 1 Inactive layer thickness: measurement (870 $\pm$ 67 µm)  $\rightarrow$  ( $\pm$ 0.18%)
- 2 Dataset selection: re-fit model using 3 sub-datasets  $\rightarrow$  (±0.22%)
- ③ Model construction: analyze 6, 8, and 12 points models  $\rightarrow$  (±0.02%, negligible)



### **Δ** Model Validation in Ge-76 0vββ signal region (2039 keV):

Model optimized using 1592.5 keV DEP events and validated in 1400 ~ 2100 keV region



Conference on frontiers of underground and space particle physics and cosmophysics

# IV. Background Suppression by Virtual Segmentation

### High energy γ background in 0vββ signal region

Th-228 at different positions is a good proxy for external High energy  $\gamma$  background sources

- Inner layer has a lower background rate (5~12% BG suppression on top of the A/E method)
- > Best background suppression for Th-228 at the side of the detector



### Surface background from Ar-42

When HPGe is immersed in LAr, background from Ar-42 (K-42) cluster on the detector surface

- Ar-42 in Atmosphere Argon: 92 μBq/kg
- ➢ Background in ROI (2039 keV): (16.8±0.9)×10<sup>-4</sup> cpkky



### Surface background from Ar-42

Assess PSD background suppression power by Geant4 + Pulse Shape Simulation



# V. Summary

## Summary

### Virtual segmentation of a small contact HPGe

Eur. Phys. J. C (2024) 84:294

- *I* SSEs in Inner/outer segments are selected using pulse time feature  $T_Q$  and  $T_I$
- *②* Volume and shape of segments are calibrated by a Th-228 scanning experiment
- ③ Inner volume =  $47.2\% \pm 0.26\%$ (stat.)  $\pm 0.22\%$ (sys.)  $\pm 0.18\%$ (sys.)
- (*4*) Virtual segmentation could suppress surface background for  $0\nu\beta\beta$  experiments



## Thanks

## **Back up Materials**





### Pulse shape simulation for Ar-42 surface events:

Three types of Ar-42 events could be removed by A/E cut:

- *I* Near p+ contact: High A/E value than normal SSE
- ② Surface events: slow pulse and incomplete charge collection (lower A/E)
- *Multi-site events:* a mixture of surface and surface/bulk hit position (lower A/E)



### □ A/E Cut for Ar-42 surface events:

- *①* Most Ar-42 backgrounds are surface events and be removed by a low A/E cut
- ② When the background is near p+ contact, it can be removed by a high A/E cut

A/E method could suppress Ar-42 background by  $\sim 10$  times in  $Q_{\beta\beta}$  region



Conference on frontiers of underground and space particle physics and cosmophysics

## **Improve 0vββ Sensitivity by Virtual Segmentation**

### □ Joint Analysis of Inner/Outer Layer Data

Inner Layer has a <u>lower Background</u> while the Outer Layer shares ~1/2 sensitive mass

Combine Inner/Outer Layer data to achieve better sensitivity

Joint Analysis

Likely hood Function for counts in 0vßß ROI:

 $L(N_{0\nu}) = \text{Poisson}(C_1|B_1 + S \cdot f_1 \cdot \varepsilon_1) \times \text{Poisson}(C_2|B_2 + S \cdot f_2 \cdot \varepsilon_2)$ 

- S is number of 0vββ signal
- C the counts, B the background,
- f the inner layer volume,  $\varepsilon$  the signal efficiency
- Index 1 (2) represents inner (outer) layer

Estimate signal number ( $\widehat{S}$ ) via Maximum likely hood:

$$\frac{\partial L(S)}{\partial S} = 0 \Longrightarrow \hat{S} = F(C, B, f, \varepsilon)$$



## Improve 0vßß Sensitivity by Virtual Segmentation

### **Discovery Sensitivity**

$$\begin{cases} P(\hat{S}_{0\nu} \leq x \mid B_1, B_2, S_{0\nu} = 0) \ge 99.73\% \\ P(\hat{S}_{0\nu} \ge x \mid B_1, B_2, S_{0\nu} = S_{dis}) \ge 50\% \end{cases}$$

## **Exclusion Sensitivity**

$$\begin{cases} P(\hat{S}_{0\nu} \leq x \mid B_1, B_2, S_{0\nu} = 0) \ge 50\% \\ P(\hat{S}_{0\nu} \ge x \mid B_1, B_2, S_{0\nu} = S_{exc}) \ge 90\% \end{cases}$$

Joint analysis gives a **better sensitivity** for a **lower** inner layer background



## Improve 0vßß Sensitivity by Virtual Segmentation

### □ Apply Method on Ar-42 Background in CDEX-300:

| PSD cuts                  | Before cut      | A/E Cut         | Outer layer     | Inner layer     |
|---------------------------|-----------------|-----------------|-----------------|-----------------|
| BI/10 <sup>-4</sup> cpkky | $16.8 \pm 0.89$ | $1.61 \pm 0.11$ | $2.10 \pm 0.15$ | $1.05 \pm 0.09$ |
| Background in 1-ton yr    | 10.7            | 1.03            | 0.71            | 0.32            |



## **Improve 0vßß Sensitivity by Virtual Segmentation**

### □ Apply Method on Ar-42 Background in CDEX-300: Signal efficiency

| PSD Cut     | Sensitive<br>Volume | 0vββ Signal Loss   |             |              | _ 0vββ Signal |
|-------------|---------------------|--------------------|-------------|--------------|---------------|
|             |                     | <b>Energy Loss</b> | Low A/E cut | High A/E cut | Efficiency    |
| Before cut  | 100.0%              | 16.6%              | /           | /            | 85.4%         |
| A/E cut     | 100.0%              | 16.6%              | 10.67%      | 0.53%        | 72.2%         |
| Inner layer | 47.2%               | 8.9%               | 16.50%      | 1.20%        | 73.4%         |
| Outer layer | 52.8%               | 22.8%              | 6.00%       | 0.00%        | 71.2%         |



## **Improve 0vββ Sensitivity by Virtual Segmentation**

### □ Apply Method on Ar-42 Background in CDEX-300:

| PSD Cut        | Sensitive<br>Volume | 0vββ Signal<br>Efficiency | Background | Sensitivity<br>(Exclusion) | Sensitivity<br>(Discovery) |
|----------------|---------------------|---------------------------|------------|----------------------------|----------------------------|
| Before cut     | 100.0%              | 85.4%                     | 10.7       | 6.91                       | 12.84                      |
| A/E cut        | 100.0%              | 72.2%                     | 1.03       | 3.97                       | 6.44                       |
| Inner layer    | 47.2%               | 73.4%                     | 0.32       | 5.74                       | 9.69                       |
| Outer layer    | 52.8%               | 71.2%                     | 0.71       | 8.46                       | 10.54                      |
| Joint analysis | 100%                | /                         | /          | 3.26                       | 5.40                       |

### **\Box** Start Point at Outer Layer: $T_I = 329$ ns



清华大学博士生学位论文答辩 – 202405

### **\Box** Start Point at Outer Layer: $T_I = 329$ ns



### **\Box** Start Point at Middle: $T_I = 378$ ns

Out  $T_I = 329 \text{ ns}$ 





### **\Box** Start Point at Outer Layer: $T_Q = 343$ ns



### **\Box** Start Point at Outer Layer: $T_Q = 343$ ns



### **\Box** Start Point at Middle: $T_0 = 313$ ns

Outer Layer  $T_O = 343$  ns

![](_page_44_Figure_3.jpeg)

![](_page_45_Figure_1.jpeg)