

Search for New Physics with Cosmic Antiparticles

Antideuteron from heavy Dark Matter

TOA \overline{d} -flux from $\chi \overline{\chi} \to b \overline{b}$ or W^+W^- (Einasto & med propagation parameters)

Phys.Lett.B 678 (2009) 20-31

Dark Matter signals at Low Energy

Phys. Rev. Lett. 129, 231101

Phys. Rev. D 107, 023003

Antideuteron Signals from Dark Matter Models

• The Antideuteron Flux is <10⁻⁴ of the Antiproton Flux

• High Signal-to-Background Ratio at low energy

* M. Korsmeier, et al, Phys.Rev.D (97) 103011 † I. Cholis et al., Phys. Rev. D. 102 (2020) 103019

Matter-Antimatter Asymmetry

According to the Big Bang Theory, matter-antimatter should be symmetry in the very early universe. However, we observed clear dominance of matter over antimatter.

Search for Baryogenesis

Search for new symmetry breaking

LHC-b, ATLAS, CMS

Proton Decay

Super-Kamiokande

Cosmic Antihelium Candidates with AMS

AMS previously reported the rate of cosmic antihelium candidates is one event per year.

Simultaneously measuring antihelium and antideuteron provides crucial information

on the origin of complex antiparticles.

AMS Measurement of |Z| = 1 Particle to Identify Antideuteron

e^{\pm} identified by the TRD To distinguish p^{\pm} , d^{\pm} the mass $M = RZ/\beta\gamma$ is reconstructed

Tracker + Magnet

Rigidity (R) and Charge Sign $R^{*}\Delta(1/R) \approx 10\%$ at 10GV

ToF

RICH

Velocity(β) and Direction by ΔT $\Delta \beta / \beta^2 \approx 4\%$ (Z=1) Velocity(β) by Cherenkov light $\Delta\beta/\beta \approx 0.1 - 0.4\%$ (Z=1)

TRD, Tracker, TOF, RICH

Charge Magnitude Along Particle Trajectory ΔZ (Z=1) \approx 0.05-0.1

Velocity and Rigidity Measurements of |Z|=1 Particles by AMS

Rigidity [GV]

Data-Driven Method: Mass Quality Estimator

Use the sum of log-likelihood $E = -\sum \log P(v_i)$ for variables (v_i) from **TOF, Tracker, RICH, TRD** to build the Mass Quality Estimator (MQE)

MQE is built with only AMS data collected in space

Performance Validation with Proton Monte Carlo Background events are rejected with high efficiency

Current AMS Anti-Deuteron Status

Bending Plane

Anti-deuteron Candidate Charge = -1.02 ± 0.05 Mass = $1.9 \pm 0.1 \ GeV/c^2$

Deuteron	
Charge	= +1
Mass	= 1.88 <i>GeV/c</i> ²

A few antideuteron candidates has been observed with AMS.

AMS will continue to take data for the ISS lifetime, exploring the origin of the cosmic ray antiparticles.

