

Machine learning-based discrimination of bulk and surface events of germanium detectors for light dark matter detection

Peng Zhang

Department of Engineering Physics, Tsinghua University

COUSP 2024

1. Introduction

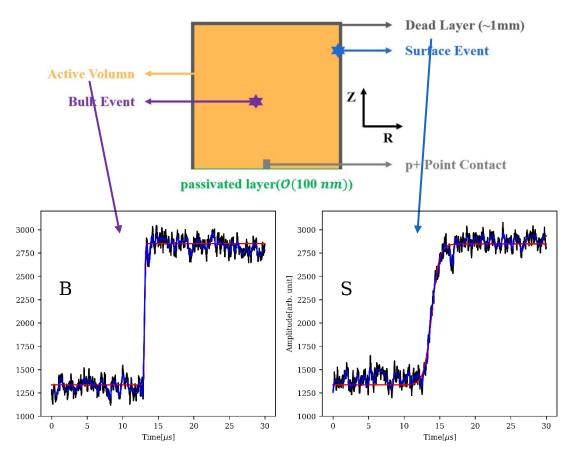
- 2. Experimental setup
- 3. Method
- 4. Results
- 5. Conclusions

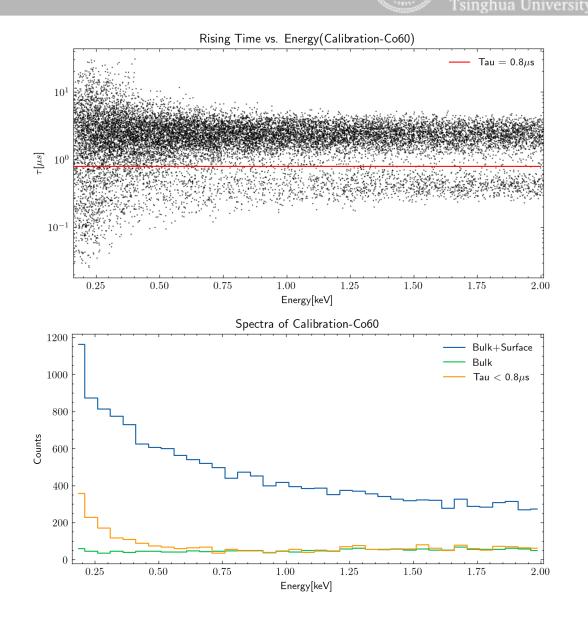
1. Introduction

Introduction: Bulk & Surface Event

What are bulk and surface events?

The schematic diagram of a typical pPCGe detector





Introduction: 'Band' Method

Analysis Procedure

- $B_m = \text{counts} (\tau < 0.8 \,\mu\text{s}), S_m = \text{counts} (\tau > 0.8 \,\mu\text{s})$
- Two efficiencies of this cut: B-signal retaining(ϵ_{BS}), S-background suppression (λ_{BS})
- Solving these equations, we can get the true Bulk and Surface counts(denoted by B_r, S_r).

$$B_{m} = \epsilon_{BS}B_{r} + (1 - \lambda_{BS})S_{r}$$

$$S_{m} = \lambda_{BS}S_{r} + (1 - \epsilon_{BS})B_{r}$$

$$B_{m} + S_{m} = B_{r} + S_{r}$$

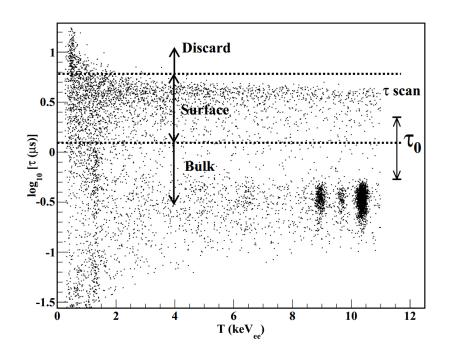
$$B_{r} = \frac{\lambda_{BS}B_{m} - (1 - \lambda_{BS})S_{m}}{\epsilon_{BS} + \lambda_{BS} - 1}$$

$$S_{r} = \frac{\epsilon_{BS}S_{m} - (1 - \epsilon_{BS})B_{m}}{\epsilon_{BS} + \lambda_{BS} - 1}$$

• Two efficiencies are calculated by comparing the Bm and the Br of different sources. The Br is obtained through Geant4 simulation

Summary

- Based on the cut of rising time, limited by fitting, and the choice of cut brings systematic error
- Too dependent on the simulation, which brings uncertainty, such as geometry, source term, etc



Introduction: 'Ratio' Method

() 「「華大学 Tsinghua University

Analysis Procedure

- After a thorough check, we find that the pdf of rising time is consistent between different sources term.
- Briefly, we consider an energy region $E = [e_0, e_1]$, a rising time region $\tau_i = [t_i, t_{i+1}]$. We consider two sample X. And we denote total counts in E is $N_{X,i}$, bulk counts in E is $B_{X,i}(B_X = \sum_i B_{X,i})$, surface counts in E is $S_{X,i}(S_X = \sum_i S_{X,i})$. We denote the probability of bulk events in τ_i is P(B, i), the probability of surface events in τ_i is P(S, i). Hence,

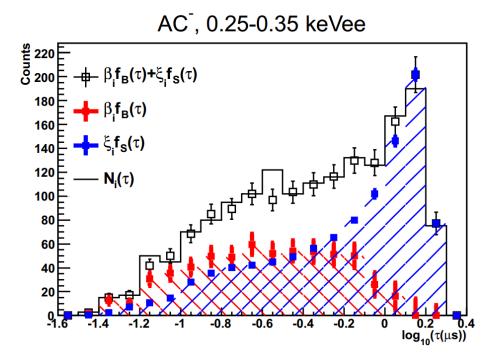
$$N_{X,i} = B_{X,i} + S_{X,i} = P(B,i) \times B_X + P(S,i) \times S_X N_{Y,i} = B_{Y,i} + S_{Y,i} = P(B,i) \times B_Y + P(S,i) \times S_Y$$

$$B_{X,i} = P(B,i) \times B_X = \frac{N_{Y,i} - \frac{S_Y}{S_X} \times N_{X,i}}{\frac{B_Y}{B_X} - \frac{S_Y}{S_X}}$$

- S_Y, S_X is unknown, but in some τ region(say region C_S), we can obtain pure surface. And $S_Y/S_X == S_{Y,C_S}/S_{X,C_S}$. The same for bulk.
- With multiple iterations, we can get the accurate B_X , S_X , B_Y , S_Y .

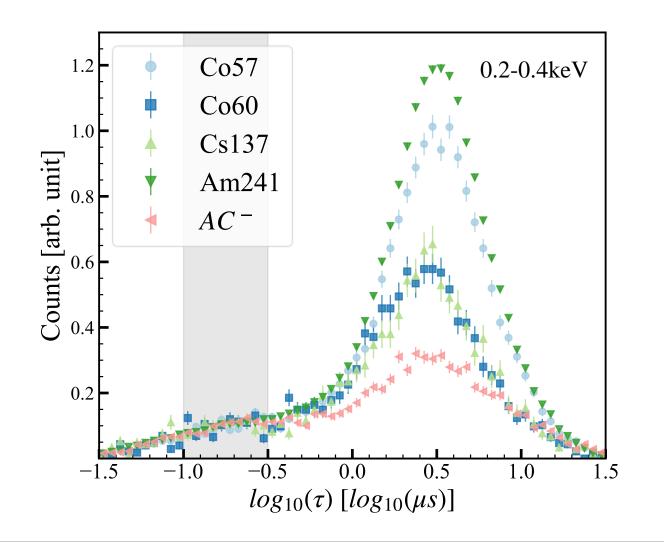
Summary

• A statistical method (A binned analysis). Difficult to handle small sample.



Introduction: Machine Learning

Why using Machine Learning?

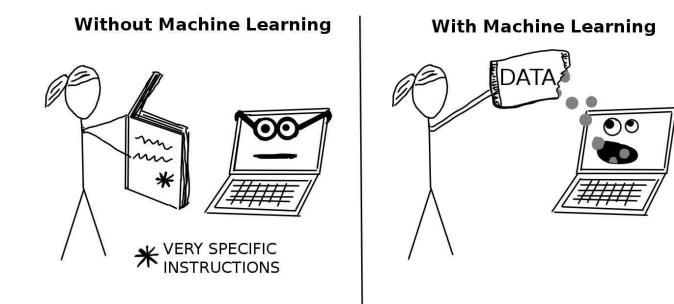


- Current features used for B/S discrimination is not good enough
- We want to find a map function to separate BE/SE further

Introduction: Machine Learning

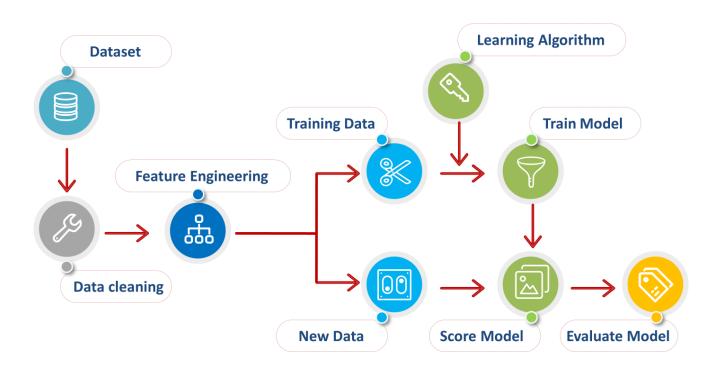
Why using Machine Learning?

- Able to automatically dig the information which is hard to find for human.
- We use supervised ML (with labels)



Introduction: Machine Learning

Work Flow of Supervised Machine Learning-Based Model

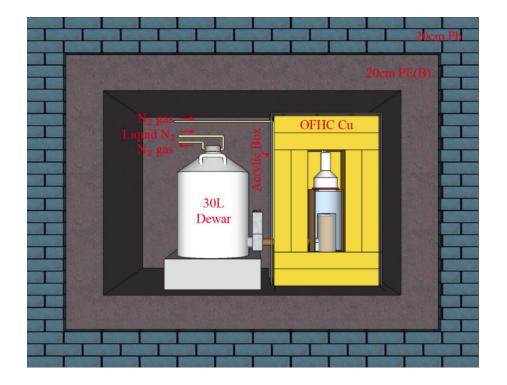


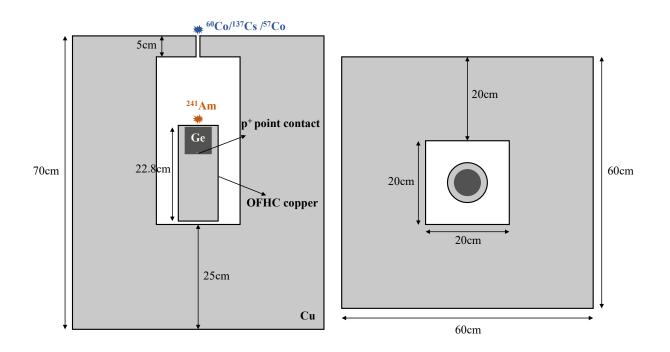
		T: True F: False P: Positive N: Negativ	
Confusion Matrix		Assigned class	
		Positive	Negative
Real class	Positive	TP	FN
	Negative	FP	TN

2. Experimental setup

Experimental Setup

- A pPCGe detector installed at China Jinping underground Laboratory (CJPL)
 - Crystal size: $62.3 \text{ mm} \times 62.3 \text{ mm} (\Phi \times \text{H})$
 - Dead layer thickness: 0.88 ± 0.12 mm





Isinghua Universit

Experimental Setup : Dataset Construction

Bulk events: Positive—label 1

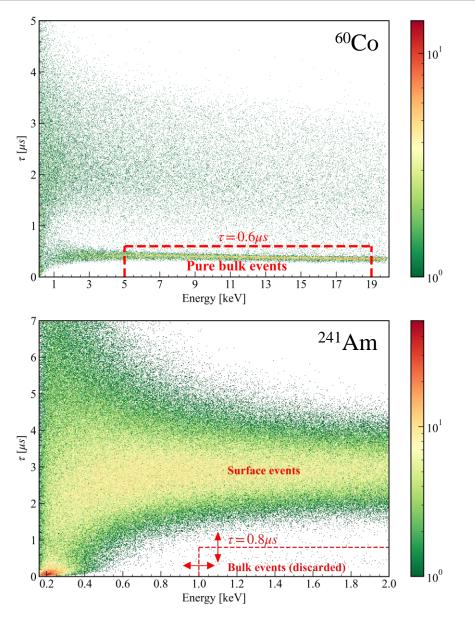
 Calibration pulses at high energy region (⁶⁰Co/¹³⁷Cs/⁵⁷Co), scaled to lower energy, then added with noise. Noise of original pulse is negligible after scale

Surface events: Negative—label 0

• ²⁴¹Am Events, as pure surface events

Dataset Splitting:

- Train-set: Train and tune the classification algorithms
- Correction-set: Calculation of efficiencies
- Test-set: Independent verification

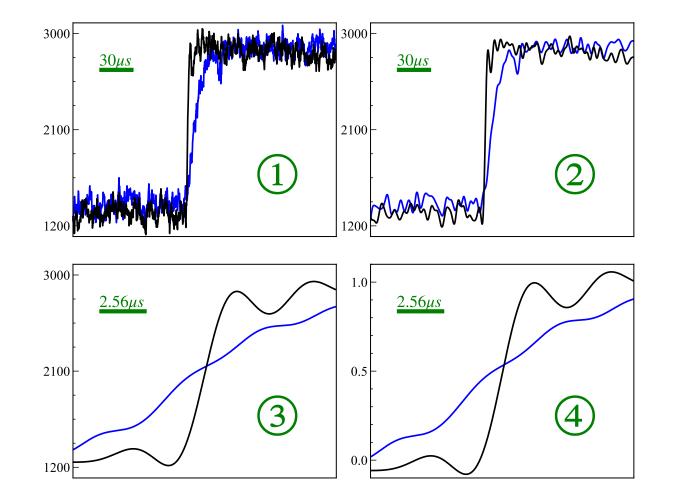


3. Method

Method: Pulse preprocessing

Pulse preprocess procedure:

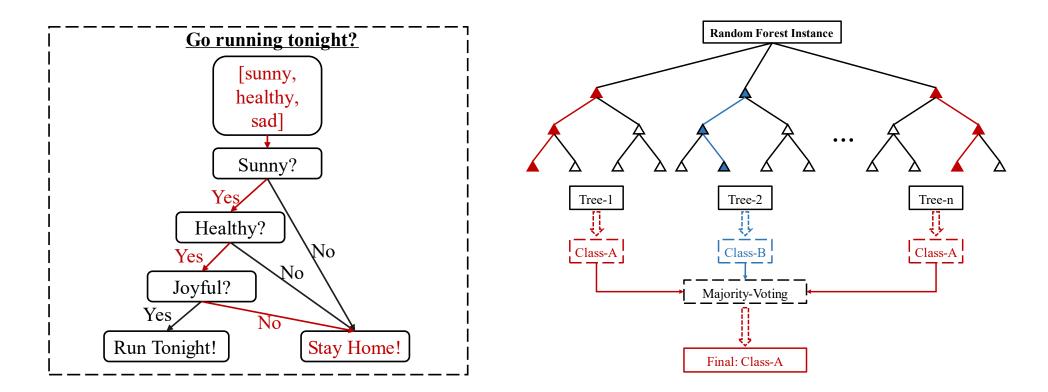
- Filtration and fitting
- Alignment and trim
- Normalization



'singhua |

Method: Algorithm and training

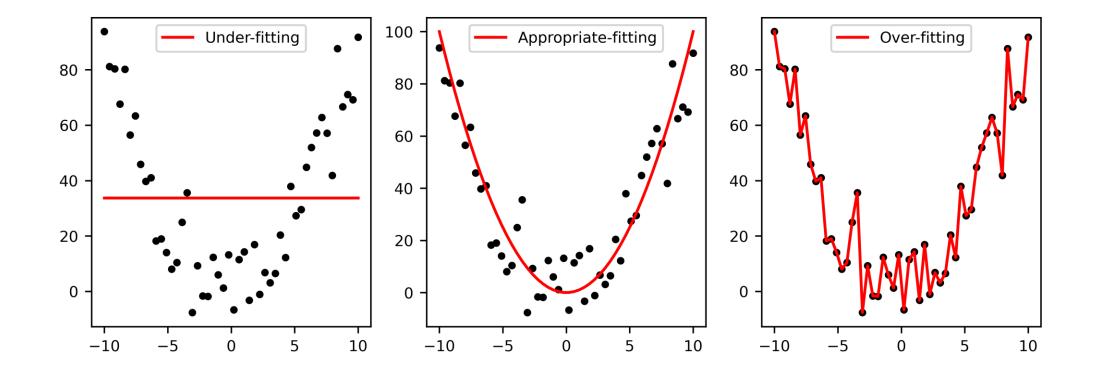
Random Forest = Cart (Classification And Regression Tree) +Bagging(Bootstrap AGgregation)



Esinghua University

Method: Algorithm and training

Principle of training and tuning

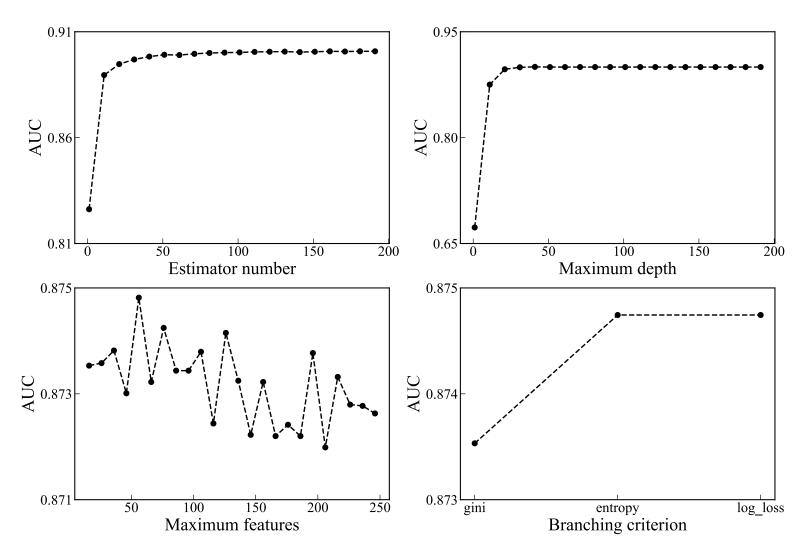


l'singhua Universit

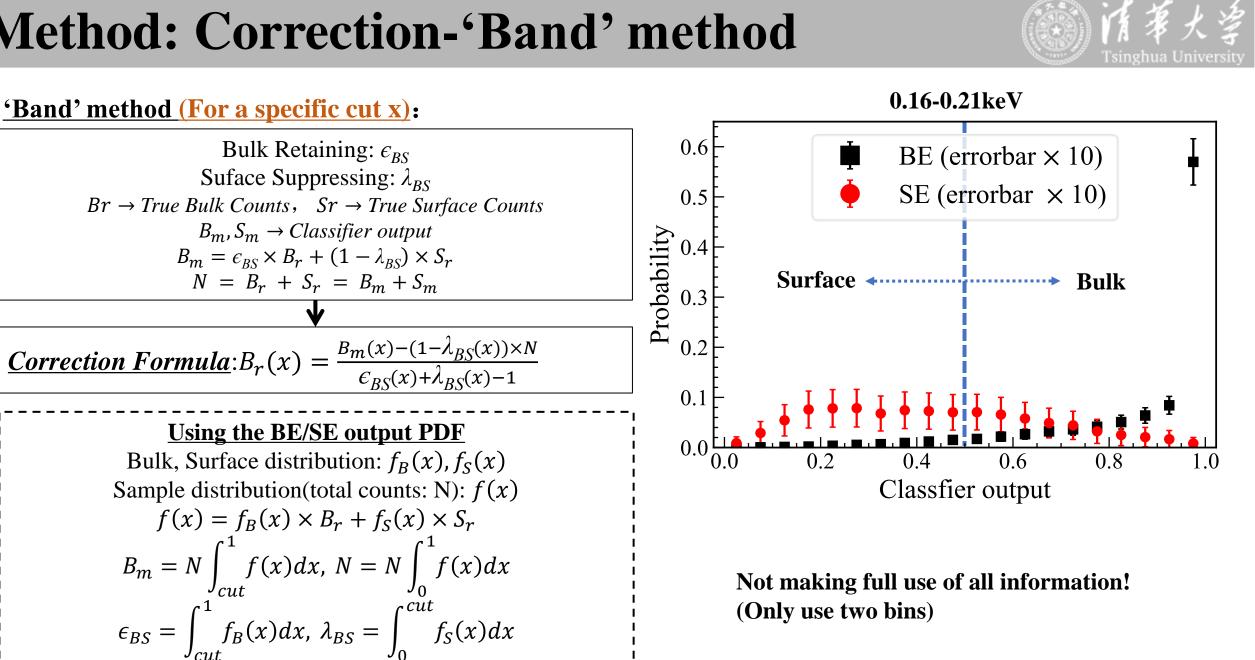
Method: Algorithm and training

Training and Tuning process

Tuning criterion: AUC score

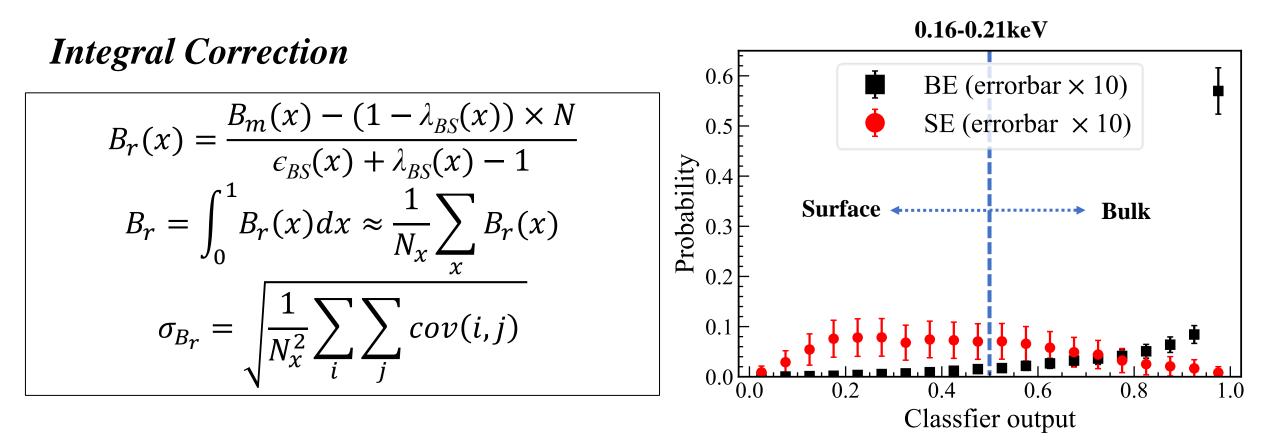


Method: Correction-'Band' method



(Only use two bins)

Method: Correction-Integral correction

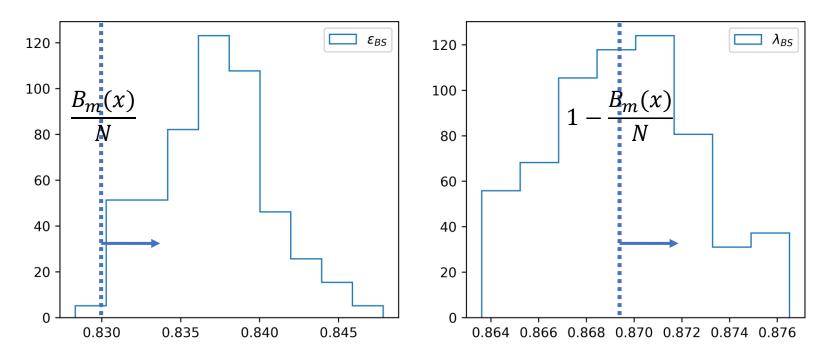


Method: Correction-Integral correction

Bayesian inference:

B:0∼N

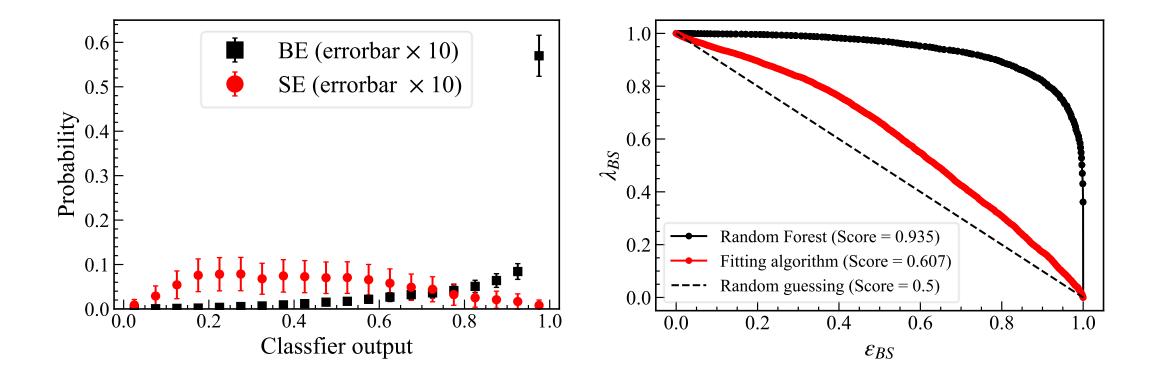
Distribution of efficiencies



4. Results

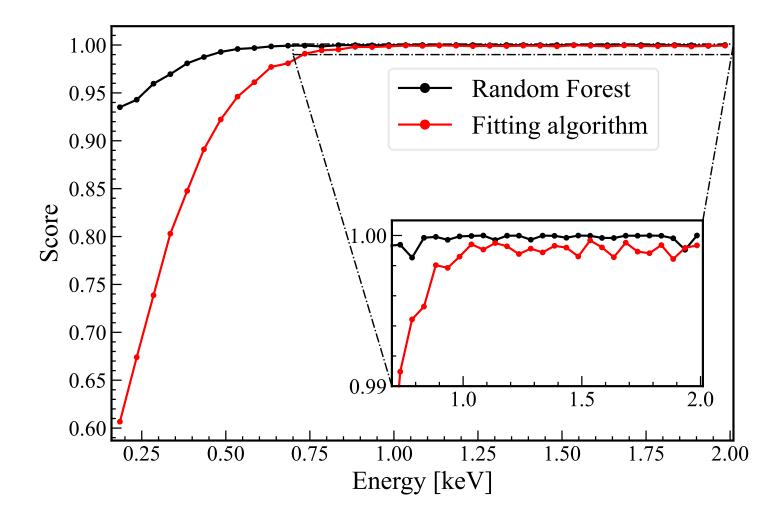
Results: Classifier output and efficiencies

- ✓ Classifier output distribution and efficiencies of different cuts (0.16-0.21keV)
 - Random forest gives a much better results than the fitting algorithm

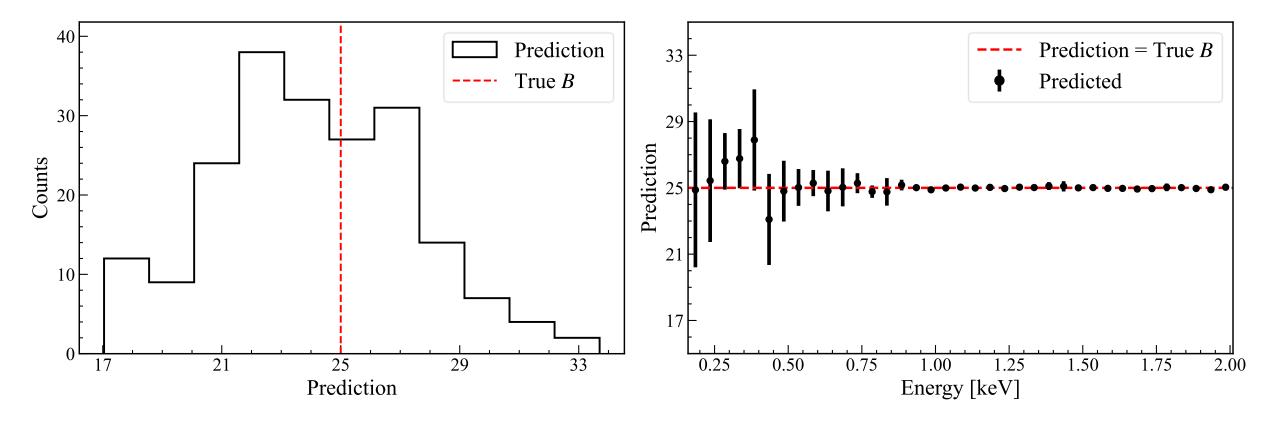


Results: Classifier output and efficiencies

✓ AUC scores of two algorithms vs. Energy



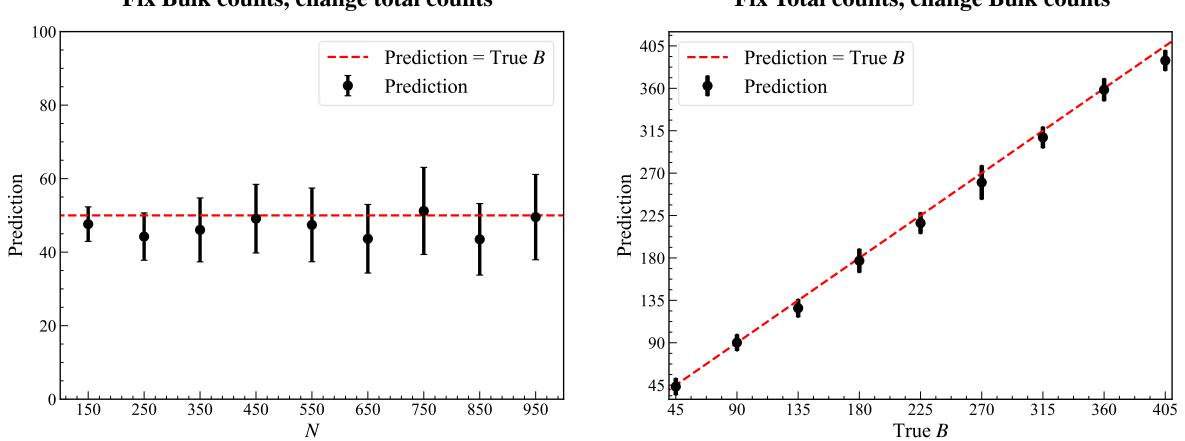
Results: Verification with test-set



B=25, N=50

ſsinghua Universit

Results: Verification with test-set

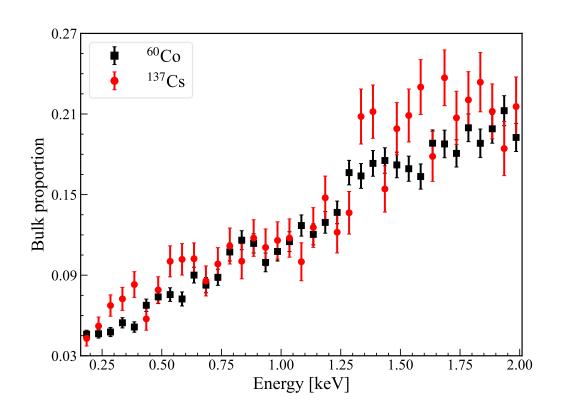


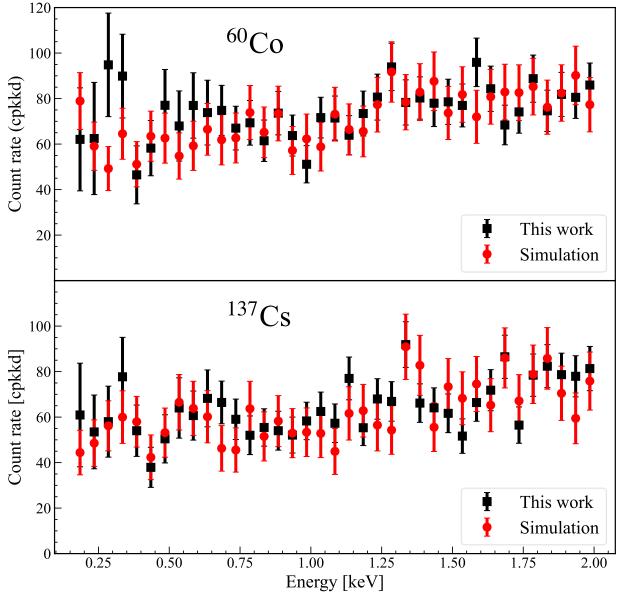
Fix Bulk counts, change total counts

Fix Total counts, change Bulk counts

Results: Verification with exp data

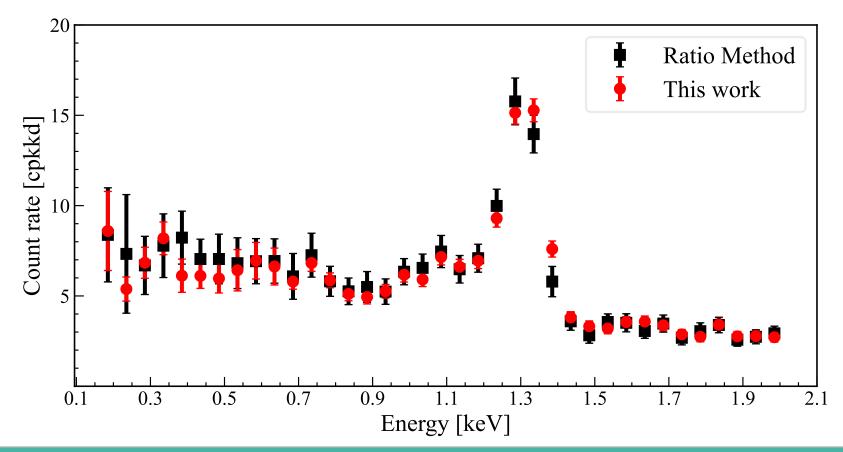
- Exp Data used in this part: high-energy calibration data
- Reference: simulated $P_B \times true N$





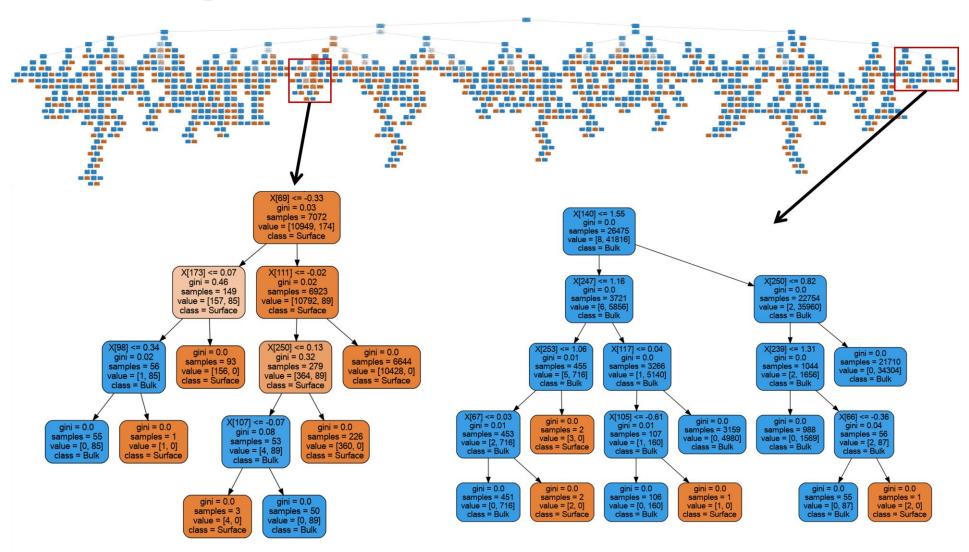
Results: On the Physics data

- ✓ Consistent with the 'Ratio' method. Achieve lower uncertainties
 - More robust than the risetime-fitting algorithm. More information of waveforms being used
 - A better BE count correction scheme

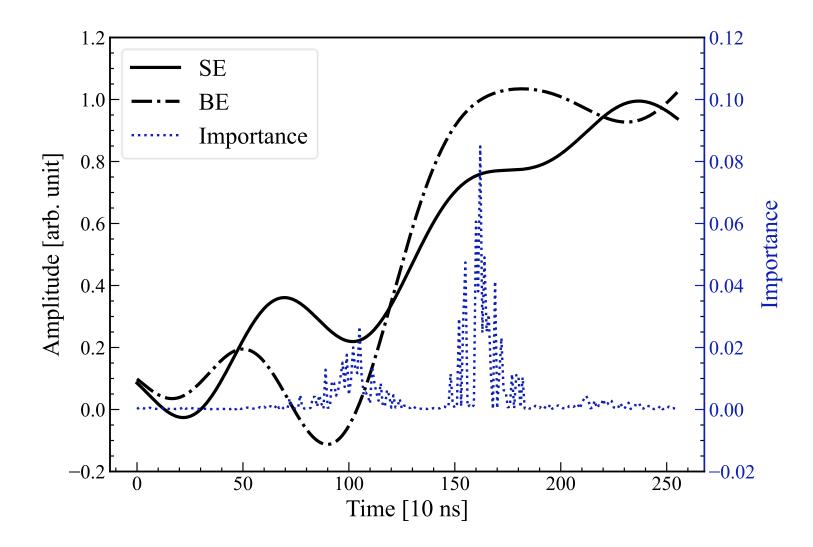


Results: Model interpretation

The structures of an optimized tree



Results: Model interpretation



5. Conclusions

- ✓ Feature extraction algorithm + Efficiency correction scheme. Both outperform the traditional methods
- ✓ Verify the model with two datasets
- ✓ Apply onto the physics data. Consistent with the 'Ratio' method
- ✓ The machine learning algorithm is interpreted

Thanks for your attention!

