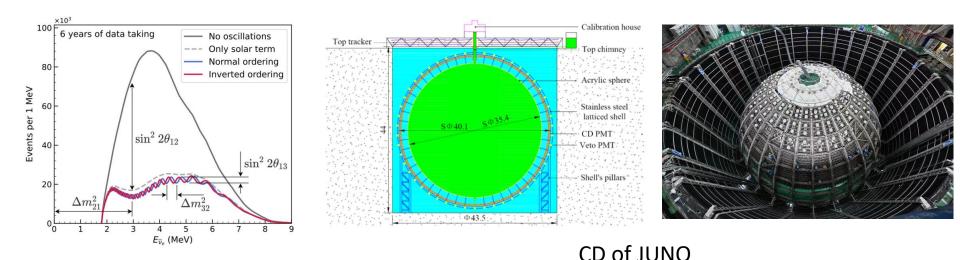
High Purity Nitrogen plant of JUNO

Yu Boxiang

IHEP, CAS, Beijing

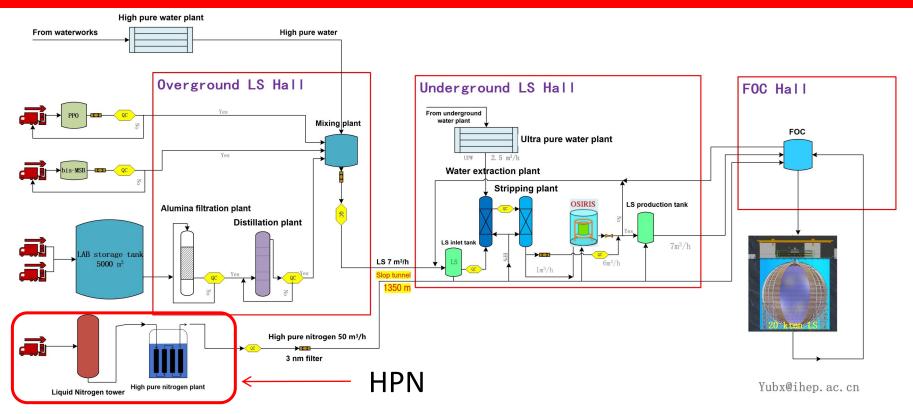
Yubx@ihep.ac.cn

1. Overview of JUNO


2. High Pure Nitrogen plant

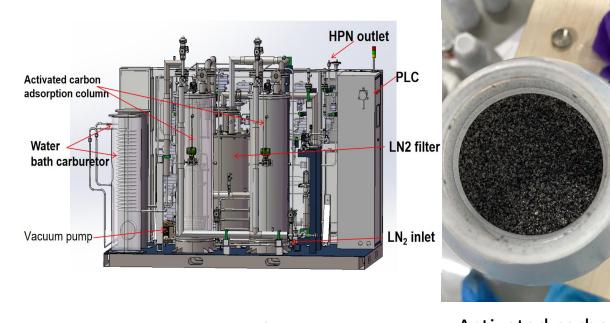
3. Rn-222, Kr-85 and Ar-39 measurement

4. Summary



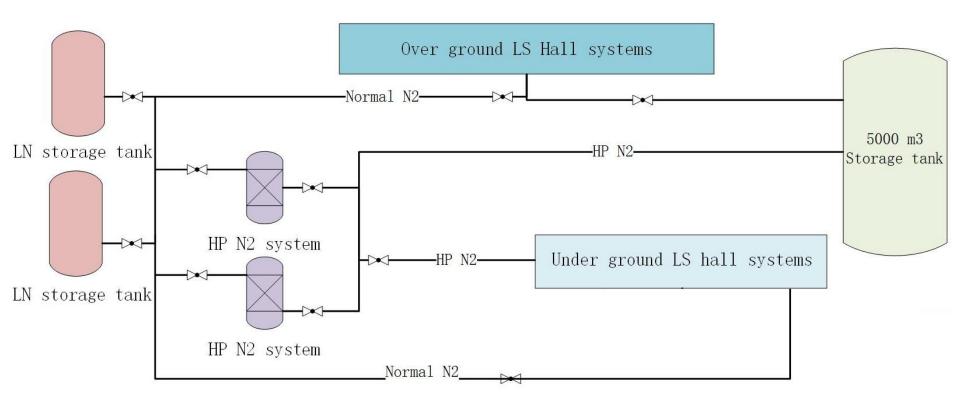
- JUNO's main physics goal is determining neutrino mass ordering.
- The CD of JUNO is a Liquid Scintillator Antineutrino Detector in underground ~650 m deep laboratory.
- 20 kton low-radioactivity background and high transparency liquid scintillator will be used.

JUNO liquid scitillator system


- Five main plants were designed and constructed for JUNO LS purification.
- HPN plant supply the HPN for all LS plants in underground hall including the CD and calibration system.

JUNO requirement of High Pure Nitrogen

- Used as cover gas for liquid scintillator systems. Used as stripping gas for removing the ²²²Rn, ⁸⁵Kr and ³⁹Ar from LS.
- JUNO requirement of HPN with Rn-222 < 10 uBq/m³, Kr-85 < 50 uBq/m³ and Ar-39 < 50 uBq/m³.
- Two Low Temperature Adsorbers columns, normal flux rate 50 Nm³/h/column, maximun flux rate 100Nm³/h.


Liquid nitrogen tower

HPN Plant

Activated carbon

Overview of JUNO nitrogen system



- Normal nitrogen is used for the plants in overground LS hall.
- HPN is used for all plants in underground LS hall.
- 10 m³/h HPN will supplied to 5000 m³ storage tank.

HPN plant flow chart

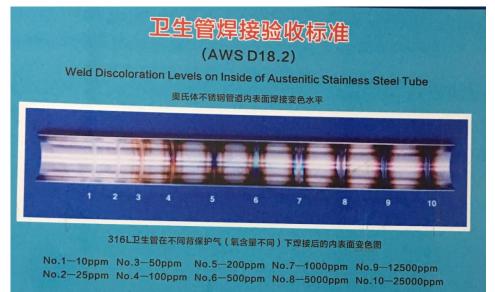
- Three sampling port for monitor Rn-222 of normal nitrogen and HPN.
- Two stages of 3 nm filter for removing particles in nitrogen.

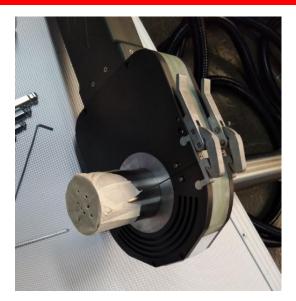
Selection of activity carbon

- Activated carbon from CARBO_ACT International.
- With very low ²²²Rn emanation rate.
- 6 kg Activated carbon was used.

Table 1

Radionuclide concentration of some charcoal samples, measured by Ge low level gamma spectrometry. Typical sample size was 19-60 g. ²²²Rn was measured after heat extraction in gas counters


Charcoal sample	Specific activity (Bq/kg)		Applied Radiation and Isotopes 52 (2000) 691 \pm 6		
	¹³⁷ Cs	²²⁸ Th	40K	²²⁶ Ra	222 _{Rn}
Silcarbon Sil40	< l	28 ± 2	80±3	28 ± 2	
Silcarbon C46	1.2 ± 0.2	1.0 ± 0.2	380 ± 15	1.0 ± 0.2	
Silcarbon K48	≤ 1	0.5 ± 0.3	10 ± 0.7	0.4 ± 0.3	0.28 ± 0.05^{a}
Hydraffin CC8x30	1.3 ± 0.2	1.2 ± 0.3	275 ± 14	1.0 ± 0.3	0.33 ± 0.02^{a}
Hydraffin UV43	3.4 ± 0.2	0.7 ± 0.3	1130 ± 44	0.5 ± 0.3	
Model PCB616	5.3 ± 0.3	0.18 ± 0.12	120 ± 7	0.37 ± 0.09	
Model 1193	0.6 ± 0.1	≤ 0.3	360 ± 20	0.20 ± 0.11	
Alcarbon 12x20	0.1 ± 0.06	≤ 0.3	590 ± 24	≤ 0.3	0.17 ± 0.02^{a}
Alcarbon 7x16	1.5 ± 0.2	≤ 0.4	690 ± 28	≤ 0.3	0.10 ± 0.02^{4}
Activated Carbon	≤ 0.5	≤ 0.5	≤ 2	≤ 0.3	0.0003 ± 0.0001


^a Wetterauer (1994).

HNP plant construction: SS orbital Welding

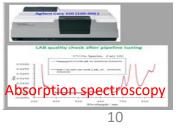
- Low background 316L SS materail was used (10 times reduction), Electro Polishing was used.
- Orbital welding is both clean and smooth.
- 5N argon was used in welding process.
- The welding sample is better than ASME BPE level 3.
- La-W welding electrode was used.

JUNO-High Pure Nitrogen system PRR 2020-07-06

清洗步骤(工作量20天)

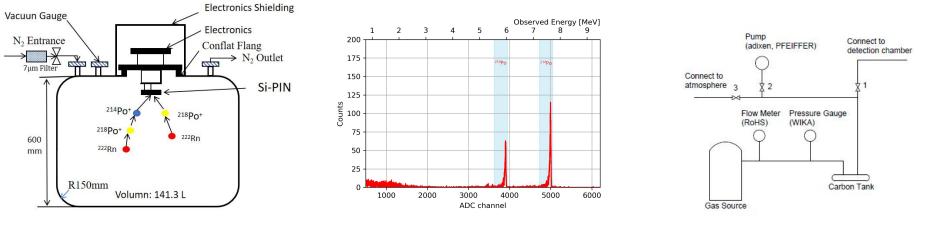
- 1. 脱脂(去除油脂)
- 2. 酸洗 (去除焊斑)
- 3. 循环水冲(去除酸洗杂质)
- 4. 钝化(产生保护层)
- 5. 循环水冲(去除钝化杂质)
- 6. 不锈钢表面粗糙度检测
- 7. 检测冲洗的水样

- 1. Resistivity test (Delta 4MO)
- 2. PH test
- 3. Visual inspection
- 4. White cloth inspection
- 5. Ultraviolet light
- 6. Endoscopic inspection
- 7. Blue point test
- 8. Surface roughness test Ra≤0.4µm
- 9. Particle counter test in washed water Level 50
- 10. Absorption spectroscopy
- 11. ICP-MS measure the U/Th in washed water, residual particle content U/Th<0.1ppt



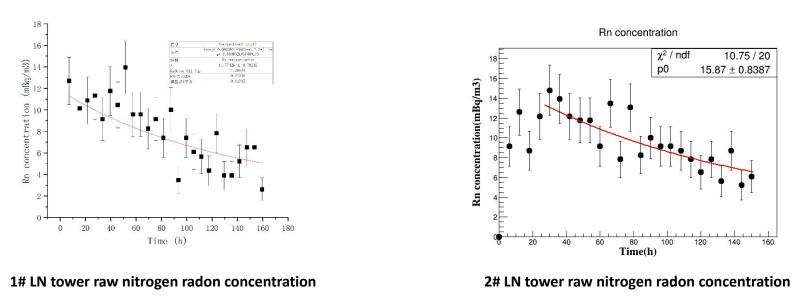
JUNO-High Pure Nitrogen system PRR 2020-07-06

JUNO cleaning standard


Commissioning of High Purity Nitrogen plant

- In February 2023, the equipment passed the acceptance test.
- The HPN plant participated in three joint commissionings and successfully completed the tasks.
- In the past two months, HPN plant has completed two months of continuous running. The interim test results meet the JUNO requirements.

- A Si-PIN is used to measures the count of the α particles released by the polonium nucleus (radon daughter), and the radon concentration is calculated by Po-214 α peak.
- The radon enrichment system increases the sampling volume by activated carbon to adsorb radon in nitrogen at low temperature.

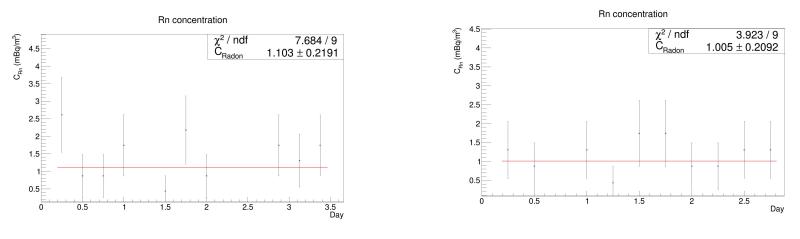

Detection chamber

Energy spectrum

Enrichment system

Radon of raw nitrogen from liquid nitrogen

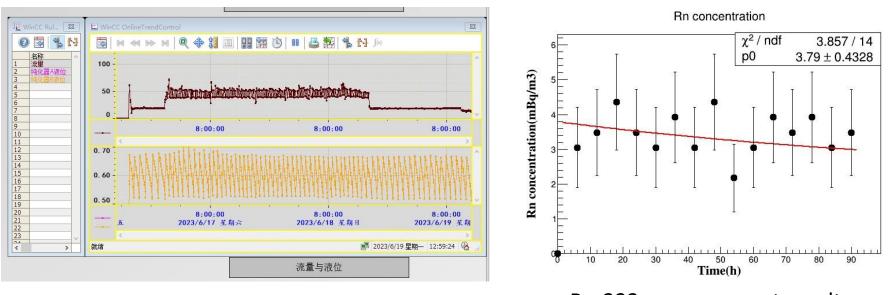
- LN Tower 1# raw nitrogen radon concentration is 19.9 ± 1.2 uBq/m3, The start time of the enrichment measurement was 3 days after the liquid nitrogen columnwas filled again with liquid nitrogen.
- LN tower 2# raw nitrogen radon concentration is 37.5± 2.0uBq/m3, The start time of the enrichment measurement after the liquid nitrogen column was filled again with liquid nitrogen.



COUSP2024, May 10, 2024, Xichang

Radon concetration of HPN

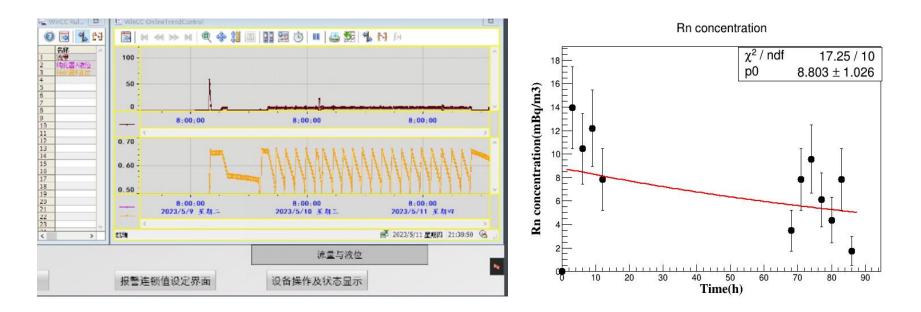
- At the HPN flux rate of 50 NM³/H of a single LTA can be operated for 10 days, and the radon concentration should be less than 10 uBq/m3.
- After A LTA Purified nitrogen enrichment, the detector average radon concentration is $1.1 \pm 0.2 \text{ mBq/m}^3$. Enrichment volume: 242 m³.
- After B LTA Purified nitrogen enrichment, the detector average radon concentration is $1.0 \pm 0.2 \text{ mBq/m}^3$. Enrichment volume: 242 m³.
- Detector detection limit is 1.33 uBq/m³.



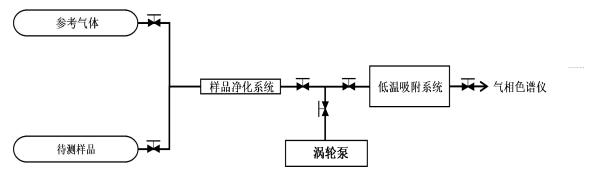
Column A HPN radon contentration

HPN radon concetration in undrgroud hall

- HPN flow rate: 50 m³/H.
- Radon concentration of HPN:5.49 \pm 0.62uBq/m³
- Detection limit @1.75uBq/m³
- Enriched nitrogen volume is 216m³.



Flux rate of HPN Plant


Rn-222 measurement result

- HPN flow: 6 m³/h
- 20-50 hours measurement time : Count reduction due to energy peak drift .
 Measurement of electronic humidity due to underground humidity.
- Radon concentration of HPN@underground LS hall is 12.83 ± 1.46 uBq/m³ (Detection limit @1.5uBq/m³, Enriched nitrogen volume is 255m³)

Kr-85 Ar-39 concetration in HPN

空气	浓度	⁸⁴ Kr	³⁹ Ar
Kr	1.14×10 ⁻⁶	57%	
Ar	9.34×10 ⁻³	\square	99.6%

Flow chart of Kr-85 measurement

Kr-85 results

⁸⁵Kr/Kr=1×10⁻¹¹L/L,比活度为1Bq/m³ ³⁹Ar/⁴⁰Ar=1×10⁻¹⁶ L/L,比活度为10 µBq/m³

Ar-39 results

样品名称	⁸⁴ Kr体积比浓度	⁸⁵ Kr体积比浓度	Ar-39 results		
地面普通氮气	56.1 ± 5.61 ppt	$98.42 \pm 9.84 \ \mu Bq/m^3$			
地面高纯氮气(三月)	3.9 ± 0.39 ppt	$6.84\pm0.86~\mu\mathrm{Bq}/\mathrm{m^3}$	样品名称	⁴⁰ Ar体积比浓度	³⁹ Ar体积比浓度
地面高纯氮气(七月)	$1.5 \pm 0.15 \text{ ppt}$	$2.63 \pm 0.26 \ \mu Bq / m^3$	地面普通氮气	$4.28\pm0.43~\text{ppm}$	$4.28\pm0.43~\mu Bq/m^3$
地下高纯氮气	17.9 ± 1.79 ppt	$31.4\pm3.14~\mu Bq/m^3$	地面高纯氮气(三月)	3.6 ± 0.36 ppm	$3.6\pm0.36~\mu Bq/m^3$
地下液闪厅空气	1.09 ± 0.1 ppm	$1.91\pm0.19~\mu Bq/m^3$	地面高纯氮气(七月)	15 ± 1.5 ppm	$15 \pm 1.5 \mu Bq / m^3$
柳壳活性炭	0.26 ± 0.03 ppt	$0.46 \pm 0.04 \ \mu Bq$ / m ³			
	Him				

- Detector has been assembled at JUNO site.
- Using nitrogen stripping radon form LS and measuring the Rn-222 in nitrogen
- Preliminary result show that Rn-222 detection limit in LS is $40 \text{mBq}/m^3$

- Consider the SS materail, active carbon, welding, cleaning and leackage test, a high pure nitrogen plant was constructed.
- The measurement result show the concetration of Rn-222, Kr-85 and Ar-39 in HPN is very low and meeted JUNO's requirement.
- This plant has passed long time running test (two months) .

Thanks!

微信二维码

COUSP2024, May 10, 2024, Xichang

Backup

- Used as flushing and purgeing nitrogen for water extraction, stripping, OSIRIS, UPW and FOC system;
- Used for removing radon from LS(stripping);
- The system passed on-site acceptance in February 2023

Item	Parameter	New data
High purity nitrogen nitrogen production (Nm^{3}/h)	50×2	Satisfy, max 80Nm3/h
Raw nitrogen ²²² Rn activity (mBq/Nm ³)	≤1	satisfy,37.54 \pm 1.54uBq/m3
Purified Nitrogen ²²² Rn activity (μ Bq/m ³)	≤ 10	<1.33uBq/m3
Continuous operation time (d)	≥10	10 days
Regeneration time of activated carbon (h)	≤ 20	Satisfy,19h
Inlet/outlet pressure (MPa)	> 1.1 / 0.8	satisfy
Cooling LN2 consumption (L/h)	< 30	Satisfy
System leakage rate	< 10-7 mbar•l/s	2.0*10-8mbar•l/s
Electric Power	< 12kW	satisfy

@1.33uBq/m3 will shows Backup

Design Parameter

Item	Paremeter	Remark
High purity nitrogen gas production (Nm ³ /h)	50×2	
Nitrogen sample ²²² Rn activity (mBq/Nm ³)	≤1	
Raw nitrogen purity	> 99.999%	
Purified Nitrogen ²²² Rn activity (μ Bq/m ³)	≤ 10	
Continuous operation time (d)	≥ 10	
Regeneration time of activated carbon (h)	≤ 20	
Inlet/outlet pressure (MPa)	> 1.1 / 0.8	
Cooling LN2 consumption (L/h)	< 30	
Quantity of activated carbon (kg)	2.5×2	CARBO_ACT International
System leakage rate	< 10-7 mbar•l/s	
Electric Power	< 12kW	

JUNO cleaning requirement

- Resistivity test (Delta 4MO)
- PH test
- Visual inspection
- White cloth inspection
- Ultraviolet light
- Endoscopic inspection
- Blue point test
- ➤ Surface roughness test Ra≤0.4µm
- Particle counter test in washed water Level 50
- Absorption spectroscopy
- ICP-MS measure the U/Th in washed water, residual particle content U/Th<0.1ppt</p>

$$dA'(t) = -\lambda A'(t)dt + \frac{6*0.9*a}{3600*1000} dt \quad (1)$$

a is purified gas radon concentration(uBq/m^3) A'(t) is Radon atomic activity that has been enriched in the activated carbon tank at t time

 $\frac{6}{3600}m^3/s=100$ slm, This is the rate of enrichment gas

0.9 is enrichment efficiency

Integral Equation 1, divide by the volume of the measuring tank

$$\mathbf{R}(\mathbf{t}) = \frac{A(t)}{0.279} = 2.56 \mathbf{a} \left(1 - \mathbf{e}^{-\lambda t} \right)$$
(2)

R (t) is Radon concentration in radon measurement tanks is elevated

When R(t) is 1.04 m Bq/m^3 (Confidence Interval,90%) ^[1],t is 48h a=1.33 uBq/m^3