

Dark Photon Dark Matter Detection with Radio Telescopes

刘佳 (Jia Liu) 北京大学物理学院

Based on 2010.15836 [PRL 2021], 2207.05767 [PRL 2023], 2301.03622 [NC 2024]

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 2024-05-09

Jia Liu, PKU

What is the nature of dark matter?

Unknown matter and energy $\sim 95\%$

The dark matter candidate models

1904.07915, TASI lecture

HEP at a cross-road: explore all directions!

Ultralight Bosonic Dark Matter

- Ultralight: $m \leq \text{keV}$, ultralight due to shift symmetry (pseudo-Nambu Goldstone, e.g. Axion)
- Bosonic: Pauli-exclusion for fermonic DM
- Exits as classical fields ($m \leq O(1) \text{ eV}$)
- Typical models:
 - Pseudo-scalar: Axion, Axion-like Particle
 - Dark Scalar: dilaton-like coupling
 - Vector: Kinetic Mixing Dark Photon, $U(1)_{R-L}$ dark photon etc

 $\mathscr{L}_{\text{ALP}} = g_{ag} \frac{a}{f_a} G\tilde{G} + \frac{g_{a\gamma}}{f_a} \frac{a}{f_a} F\tilde{F} + g_{af} \frac{\partial_{\mu}a}{2f_a} \bar{f}\gamma^{\mu}\gamma_5 f$

 $g_{a\gamma\gamma}aF_{\mu\nu}\epsilon^{\mu\nu\alpha\beta}F_{\alpha\beta}\sim g_{a\gamma\gamma}a\overrightarrow{E}\cdot\overrightarrow{B}$

- Extra U(1) extension of Maxwell Equations $\mathscr{L} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} + 0 \times A^{\mu} A_{\mu} - e A_{\mu} j_{\rm em}^{\mu}$ $-\frac{1}{\Delta}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}^2A'^{\mu}A'_{\mu} - \frac{1}{2}\epsilon F'_{\mu\nu}F^{\mu\nu}$ A'Hidden Sector

• Two free parameters: $m_{A'}$ and ϵ Jia Liu

矢量型超轻暗物质: 暗光子 • Maxwell Equations: $\mathscr{L} = -\frac{1}{\varDelta}F_{\mu\nu}F^{\mu\nu} + 0 \times A^{\mu}A_{\mu} - eA_{\mu}j_{em}^{\mu}$

超轻玻色型暗物质探寻

超轻玻色型暗物质探寻

Jia Liu

8

Radio astronomy and ultralight bosonic dark matter **Radio telescope at Earth** 太阳物理

Dark photon dark matter resonant conversion at solar corona

An, Huang, JL, Xue, 2010.15836 (PRL 2021) An, Chen, Ge, Liu, Luo, 2301.03622 (NC 2024) Editor Highlights

Jia Liu

Dark photon dark matter conversion at radio telescope

An, Ge, Guo, Huang, JL, Lu, 2207.05767 (PRL 2023, Featured in Physics) reported by APS Physics, Phys.org, Physics Today

The dark photon dark matter conversion at solar corona

The plasma frequency

Jia Liu

• Resonant conversion $A' \rightarrow \gamma$

When
$$m_{A'} = \omega_p$$

 $A' \qquad \gamma$

• For any A' mass, it can happen at a radius r_c

•
$$m_{A'} = \omega_p(r_c)$$

 Can set limits for mass range $m_{A'} \in [10^{-8}, 10^{-5}] \text{ eV}$

The dark photon dark mat

• Th

The resonant conversion probability (QFT method)

$$P_{A' \to \gamma}(v_r) = \frac{1}{3} \int \frac{dt}{2\omega} \frac{d^3 p}{(2\pi)^3 2\omega} (2\pi)^4 \delta^4 \left(p_{A'}^{\mu} - p_{\gamma}^{\mu} \right) \sum_{\text{pol}} |\mathcal{M}|^2$$

$$= \frac{2}{3} \times \pi \epsilon^2 m_{A'} v_r^{-1} \left| \frac{\partial \ln \omega_p^2(r)}{\partial r} \right|_{\omega_p(r)=m_{A'}}^{-1}$$

$$\frac{\mathcal{M} = -\epsilon m_{A'}^2 \left(\xi_{\gamma}^*(p) \cdot \xi_A(p) \right)}{\left[\frac{1}{3} \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{2}{3} \epsilon^2 m_{A'}^4 \right]}$$

$$\int dt \delta(E_{A'} - E_{\gamma}) = 2\omega^{-1} \left(\frac{\partial \ln \omega_p^2}{\partial t} \right)^{-1}$$

- The wave method can work and is in agreement with QFT calculation

$$\begin{bmatrix} \omega^2 - k^2 - \begin{pmatrix} \omega_p^2 & -\epsilon m_{A'}^2 \\ -\epsilon m_{A'}^2 & m_{A'}^2 \end{pmatrix} \end{bmatrix} \begin{pmatrix} A(r,t) \\ A'(r,t) \end{pmatrix} = 0$$

• Due to the forced 4-momentum conservation, it applies to resonant conversion only.

Sensitivity of the radio telescope

- The system equivalent flux density
 - For solar observation, Sun is the largest bkg

$$\text{SEFD} = 2k_B \frac{T_{\text{sys}} + T_{\odot}^{\text{nos}}}{A_{\text{eff}}} \bullet$$

• The minimum detectable flux density

$$S_{\min} = \frac{\text{SEFD}}{\eta_s \sqrt{n_{\text{pol}} \mathcal{B} t_{\text{obs}}}}$$

Name	f [MHz]	$B_{ m res}~[m kHz]$	$\langle T_{\rm sys} \rangle$ [K]	$ig \langle A_{ m eff} angle $ [1
SKA1-Low	(50, 350)	1	680	2.2×1
SKA1-Mid B1	(350, 1050)	3.9	28	2.7 imes 1
SKA1-Mid B2	(950, 1760)	3.9	20	3.5 imes 1
LOFAR	(10, 80)	195	$28,\!110$	1,830
LOFAR	(120, 240)	195	1,770	1,530
				-

The sensitivity of DPDM from solar resonant conversion

- $S_{\text{sig}} \times P_s = S_{\min}$
- 10 MHz lower end from LOFAR threshold

The sensitivity of DPDM from LOFAR data

6

暗光子暗物质

Nature Communications 15 (2024) 915

Jia Liu

轴子暗物质

• 轴子在中子星(Magnetar)强磁场中转化为单频光子

Jia Liu

中子星观测与超轻轴子暗物质

Radio astronomy and ultralight bosonic dark matter **Radio telescope at Earth Solar Physics**

Dark photon dark matter resonant conversion at solar corona An, Huang, JL, Xue, 2010.15836 (PRL 2021) An, Chen, Ge, Liu, Luo, 2301.03622 (NC 2024) Editor's highlights

Jia Liu

Dark photon dark matter conversion at radio telescope

An, Ge, Guo, Huang, JL, Lu, 2207.05767 (PRL 2023, Featured in Physics) reported by APS Physics, Phys.org, Physics Today

Direct detection of DPDM using dish antenna radio telescope

• Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} - \epsilon e A'_{\mu} j^{\mu}_{\text{em}} + e A_{\mu} j^{\mu}_{\text{em}}.$$

Extended Maxwell Eqs

$$egin{aligned} &
abla \cdot m{E'} &= -\epsilon
ho - m_{A'}^2 A'^0, \ &
abla \cdot m{B'} &= 0, \ &
abla \times m{E'} + rac{\partial m{B'}}{\partial t} &= 0, \ &
abla \times m{B'} - rac{\partial m{E'}}{\partial t} &= -\epsilon m{J} - m_{A'}^2 m{A'}, \end{aligned}$$

• Perfect conductor

$$\mathbf{J} = \sigma (\mathbf{E} - \epsilon \mathbf{E}_{\mathbf{D}})$$
$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$$

Jia Liu

FAST radio telescope

Direct detection of DPDM using dish antenna radio telescope

• The feature of current on a metal conductor plate induced by DPDM

> $i_{tot,x} = i_{up,x} + i_{down,x} \approx -2i\epsilon m_{A'}A'_x,$ $i_{tot,y} = i_{up,y} + i_{down,y} \approx -2i\epsilon m_{A'}A'_{y},$ J=0.

- Solving the reflected EM field
 - (always perpendicular to the surface
 - Oscillating dipole unit

$$d\mathbf{p} = 2\epsilon \mathbf{A}_{\parallel}' dS \qquad \qquad \mathbf{B} = -\frac{\epsilon m_{A'}^2}{2\pi} \int dS_1 \mathbf{A}_{\parallel}' \times (\mathbf{r} - \mathbf{r}_1) \frac{e^{im_{A'}|\mathbf{r} - \mathbf{r}_1|}}{|\mathbf{r} - \mathbf{r}_1|^2}$$

- Regular shapes of reflector can be solved
- General shapes need numerical integration

19

Direct detection of DPDM using dish antenna radio telescope

The signal feature for DPDM with different mirrors

Constraints from FAST observation data

- 'Bump hunting' in the frequency data
 - Using likelihood-based statistical test

 $S_{\rm lim} \sim 10^{-29} \text{ W m}^{-2} \text{ Hz}^{-1}$

 $\epsilon \sim 10^{-12}$

The results for direct detection of DPDM using FAST radio telescope

- using conversion at antenna dish

未来与展望:太阳物理观测与超轻暗物质探测

- "千眼天珠"稻城太阳射电望远 (Daocheng Solar Radio Telescope)
- 313 parabolic antennas of 6-meter diameter each
- Operational frequency: 150 MHz 450 MHz

Jia Liu

How to detect the frequencies outside the Radio Window?

Jia Liu

未来与展望: 突破Radio Window

Wavelength

未来与展望: 空间天文射电探测

- How to detect the frequencies outside the Radio Window?
- Solar signal: Go Space

Parker Solar Probe preliminary results

Jia Liu

Summary

- 超轻玻色型暗物质探测与天文学望远镜观测可以交叉合作
 - 暗光子暗物质可以在太阳等离子体环境中转化为单频光子信号
 - 太阳物理观测数据可以探测超轻暗物质
 - LOFAR、SKA、Daocheng Solar Radio Telescope
 - 暗光子暗物质可以在望远镜反射面或天线阵列转化为单频信号
 - 观测空白天区可以探测超轻暗物质
 - FAST、LOFAR
- 未来可以通过太空射电望远镜探测射电窗口以外的质量区间

Jia Liu