第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 2024年5月7日-12日, 西昌

Majoron dark matter and the BAU

晁伟(北京师范大学)

Based on works with Ying-quan Peng, Hai-jun Li, Ming-jie Jin and Yue Wang

I: The origin of the ALP mass

There is no well-known mechanism for the mass generation of ALP, except the QCD axion.

We present a mechanism for the mass generation of Majoron via the type-l and the type-II seesaw mechanism.

Preview

II: The Baryon Asymmetry of the Universe

New physics beyond the SM-dark matter

Evidence of dark matter

measured

distance from center flight vear

WEI CHAO

What we concern: construct a DM theory

Where we start from? ν physics

OProperties of neutrinos are similar to these of dark matter

ONeutrino is a hot dark matter candidate

OSterile neutrino is typical warm/cold dark matter candidate

WEI CHAO

OThe signal of neutrino in direct detection experiments is similar to that of DM

Neutrino mass generations

Majoron & neutrino mass via type-l seesaw

Type-I seesaw + spontaneous breaking $U(1)_L$ symmetry

$$H = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \end{pmatrix} \qquad \Phi = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

Yukawa Interaction

$$-Y_{\rm N}\overline{\mathcal{\ell}_L}\widetilde{HN}_R\to M_D$$

$$m\overline{N_R^C}N_R + h \cdot c \, .$$

Key term:

WEI CHAO

 \tilde{a} : Majoron

 $= Y_N v / \sqrt{2}$

Quantum Gravity effect!

Majoron interactions and Majoron mass

Field-dependent phase transformation

 $\ell_L \to e^{-\frac{ia}{2f}} \ell_L \qquad S \to e^{+\frac{ia}{f}} S$

 $E_R \to e^{-\frac{ia}{2f}} E_R \qquad H \to H$

 $N_R \rightarrow e^{-\frac{ia}{2f}} N_R$

 $\mathscr{L} \to \mathscr{L} - \frac{\alpha}{2f} \partial_{\mu} \left(\overline{\ell}_{L} \gamma^{\mu} \ell_{L} + \overline{E}_{R} \gamma^{\mu} E_{R} \right)$ $=\mathscr{L}-\frac{a}{2f}\partial_{\mu}J_{\mu}^{L}$ $=\mathscr{L} + \frac{a}{2f} \frac{N_f}{32\pi^2} \left(g^2 W^a_{\mu\nu} \widetilde{W}^{\mu\nu,a} - g'^2 B_{\mu\nu} \widetilde{B}^{\mu\nu} \right)$

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{}+h.c.$

Majoron interactions and Majoron mass

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{} + h.c. \longrightarrow$

Mass insertion of righthanded neutrino masses:

Before symmetry breaking: M = m

 $M = f_a Y_M / \sqrt{2 + m}$ After symmetry breaking:

$$V_a \sim -\frac{1}{16\pi^2} \sum_{n=1}^4 a_n \cos n\theta.$$

a_1	a_2	a_3	6
$mM^3\left(1+\log\frac{M^2}{M_{pl}^2}\right)$	$2m^2M^2\lograc{M^2}{M_{pl}^2}$	m^3M	n

Majoron mass and its relic density

Majoron mass:	$m_a^2 = \frac{1}{f_a^2}$
Initial velocity: (From Noether theorem)	$\dot{\theta}^2 \propto \frac{T_1}{g}$
ΕΟΜ	$\ddot{\theta} + 3He$

WEI CHAO

$$\frac{d^2 V}{d\theta^2} = \frac{1}{16\pi^2 f_a^2} \left| a_1 + 4a_2 + 9a_3 + 16a_4 \right|.$$

 $\frac{\Gamma[Y_M^4]}{96\pi^2} f_a^2 \cos 4\theta, \qquad \begin{array}{ll} \text{In the traditional} \\ \textbf{misalignment mechanism} \\ \dot{\theta}_i = 0 \end{array}$

$$\dot{\theta} + \frac{1}{f_a^2} \frac{dV_a}{d\theta} = 0,$$

Different oscillation temperature

WEI CHAO

Majoron mass and its relic density

WEI CHAO

Sehemas

Baryon asymmetry of the universe

Source term:

 $\left(n_{S}^{WS}, n_{S}^{W_{12}},\right)$

Weinberg operator decoupling temperature: $T_{\rm W} \simeq 6 \times 10^{12} \,{\rm GeV} \times \left(\frac{0.05 \,{\rm eV}}{m_{\nu}}\right)^2$.

$$\left(\frac{i}{S}\right) = -\frac{1}{g_i} \sum_{\alpha} n_i^{\alpha} \frac{\gamma_{\alpha}}{H} \left[\sum_j n_j^{\alpha} \left(\frac{\mu_j}{T}\right) - n_S^{\alpha} \frac{\dot{\theta}(T)}{T} \right]$$

$$n_{S}^{W_{3}}, n_{S}^{SS}, n_{S}^{Y_{\tau}}, n_{S}^{Y_{t}}, n_{S}^{Y_{b}} = \left(\frac{3}{2}, 1, 1, 0, 0, 0, 0\right).$$

Baryon asymmetry of the universe

Majoron & neutrino mass via type-II seesaw

Type-II seesaw + spontaneous breaking $U(1)_I$ symmetry

 $V(S, \Phi, \Delta) = V(\Phi, \Delta) - \mu_S^2(S^{\dagger}S) + \lambda_6(S^{\dagger}S)^2$

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \end{pmatrix} \qquad \Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \frac{v_{\Delta} + \delta + i\xi}{\sqrt{2}} & \frac{\Delta^+}{\sqrt{2}} \end{pmatrix}$$

Yukawa Interaction

 $-\mathscr{L}_{\Delta} = Y_{\alpha\beta} \overline{\mathscr{L}_{L}^{\alpha C}} i\sigma^{2} \Delta \mathscr{L}_{L}^{\beta} + h.c.$

Key term:

 $\mu \Phi^T i \sigma^2 \Delta \Phi + h . c .$

WEI CHAO

LNV term! $+\lambda_7(S^{\dagger}S)(\Phi^{\dagger}\Phi) + \lambda_8(S^{\dagger}S)\operatorname{Tr}(\Delta^{\dagger}\Delta) + \mu \Phi^T i\tau_2 \Delta^{\dagger}\Phi + \lambda S \Phi^T i\tau_2 \Delta^{\dagger}\Phi + h.c.,$

$$S = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

 \tilde{a} : Majoron

Majoron & neutrino mass via type-II seesaw

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \qquad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + v_{\Delta}^2 +$$

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \qquad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + v_{\Delta}^2 +$$

$$\begin{aligned} & \text{Gauge boson masses} \\ & m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}} \end{aligned}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1', \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix}, \end{aligned}$$
Mixing angl for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \quad \tan 2\beta_3' = \frac{2v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + 4v_{\Delta}^2 + v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2}\mu + v_{\Delta}^2 + v_$$

Majoron & neutrino mass via type-II seesaw

Sequential breaking of various symmetries

Majoron massive!

Neutrino massive

EWSB scale

$$(m_{\nu})_{\alpha\beta} = y_{\alpha\beta}v$$

$$m_a^2 = \frac{\sqrt{2\mu v_{\phi}^2 v_{\Delta}(v_{\phi}^2 + v_{\phi}^2)}}{2v_{\phi}^2 (v_{\Delta}^2 + v_s^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\phi}^2 + v_{\phi$$

For experts of axion physics

Majoron mass should arise from cosine like potential!

Majoron DM—oscillation time

Scale

Energy

$$m_a^2(T) = \begin{cases} \frac{\mu v_{\phi}^2(T) v_{\Delta}(T)}{\sqrt{2} f_a^2}, & T \le T_{\rm C} \\ 0, & T > T_{\rm C} \end{cases}$$

$$T_{\rm osc} = \begin{cases} T_*, & m_a < m_{aC} \\ T_{\rm C}, & m_a \ge m_{aC} \end{cases}$$

$$m_{aC} = 1.079 \times 10^{-4} \,\mathrm{eV}$$

Majoron DM—simulations

Equation of motion

Analytical results $\theta(t) = -\pi \left[-2m -Y_{\frac{1}{4}}(m_a t)J + 2m_a t_i J_{\frac{1}{4}}(m_a t) Y_{\frac{5}{4}}(m_a t_i) \right] / \left\{ +J_{\frac{5}{4}}(m_a t_i) Y_{\frac{1}{4}}(m_a t_i) - J_{\frac{1}{4}}(m_a t_i) \right\}$

Majoron energy density $\rho_a(T_0)$

WEI CHAO

 $\ddot{\theta} + 3H\dot{\theta} + m_a^2(T)\theta = 0$

$$n_{a}t_{i}J_{\frac{1}{4}}(m_{a}t)Y_{-\frac{3}{4}}(m_{a}t_{i}) + 2m_{a}t_{i}Y_{\frac{1}{4}}(m_{a}t)J_{-\frac{3}{4}}(m_{a}t_{i})$$

$$J_{\frac{1}{4}}(m_{a}t_{i}) - 2m_{a}t_{i}Y_{\frac{1}{4}}(m_{a}t)_{\frac{5}{4}}(m_{a}t_{i}) + J_{\frac{1}{4}}(m_{a}t)Y_{\frac{1}{4}}(m_{a}t)$$

$$\left\{2\sqrt{3}t^{\frac{1}{4}}t^{\frac{3}{4}}_{i}\left[J_{\frac{1}{4}}(m_{a}t_{i})Y_{-\frac{3}{4}}(m_{a}t_{i}) - J_{-\frac{3}{4}}(m_{a}t_{i})Y_{\frac{1}{4}}(m_{a}t_{i})\right]$$

$$= \frac{1}{2}m_{a}^{2}f_{a}^{2}\langle\theta_{a,i}^{2}\rangle\frac{g_{*s}(T_{0})}{g_{*s}(T_{0}c)}\left(\frac{T_{0}}{T_{0}cc}\right)^{3}$$

Majoron DM—Relic Density

Majoron interactions from mixings

Interactions with scalars

Vertices	Coefficients		
a^4	$\frac{1}{4}\lambda_1V_{13}^4 + \frac{1}{4}\lambda_4V_{13}^2V_{23}^2 + \frac{1}{4}\lambda_5V_{13}^2V_{23}^2 + \frac{1}{2}\lambda V_{13}^2V_{23}V_{33} + \frac{1}{4}\lambda_2V_{23}^4 + \frac{1}{4}\lambda_3V_{23}^4 + \frac{1}{4}\lambda_6V_{33}^4$		
a^3G	$\begin{split} \lambda_1 V_{11} V_{13}^3 + \frac{1}{2} \lambda_4 V_{11} V_{13} V_{23}^2 + \frac{1}{2} \lambda_5 V_{11} V_{13} V_{23}^2 + \lambda V_{11} V_{13} V_{23} V_{33} + \frac{1}{2} \lambda_4 V_{13}^2 V_{21} V_{23} \\ + \frac{1}{2} \lambda_5 V_{13}^2 V_{21} V_{23} + \frac{1}{2} \lambda V_{13}^2 V_{21} V_{33} + \frac{1}{2} \lambda V_{13}^2 V_{23} V_{31} + \lambda_2 V_{21} V_{23}^3 + \lambda_3 V_{21} V_{23}^3 + \lambda_6 V_{31} V_{33}^3 \end{split}$		
a^2h^2	$\frac{\frac{1}{2}\lambda_{1}U_{11}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{4}U_{11}^{2}V_{23}^{2} + \frac{1}{4}\lambda_{5}U_{11}^{2}V_{23}^{2} - \frac{1}{2}\lambda U_{11}^{2}V_{23}V_{33} + \lambda U_{11}U_{21}V_{13}V_{33}}{-\lambda U_{11}U_{31}V_{13}V_{23} + \frac{1}{4}\lambda_{4}U_{21}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{5}U_{21}^{2}V_{13}^{2} + \frac{1}{2}\lambda_{2}U_{21}^{2}V_{23}^{2} + \frac{1}{2}\lambda_{3}U_{21}^{2}V_{23}^{2} + \frac{1}{2}\lambda U_{21}U_{31}V_{13}^{2} + \frac{1}{2}\lambda_{6}U_{31}^{2}V_{33}^{2}}$		
a^2h	$ \begin{split} \lambda_{1}U_{11}v_{\phi}V_{13}^{2} + \frac{1}{2}\lambda_{4}U_{11}v_{\phi}V_{23}^{2} + \frac{1}{2}\lambda_{5}U_{11}v_{\phi}V_{23}^{2} - \lambda U_{11}v_{\phi}V_{23}V_{33} - \sqrt{2}\mu U_{11}V_{13}V_{23} \\ -\lambda U_{11}V_{13}V_{23}v_{s} + \lambda U_{11}V_{13}V_{33}v_{\Delta} + \lambda U_{21}v_{\phi}V_{13}V_{33} + \frac{1}{\sqrt{2}}\mu U_{21}V_{13}^{2} + \frac{1}{2}\lambda_{4}U_{21}V_{13}^{2}v_{\Delta} + \frac{1}{2}\lambda_{5}U_{21}V_{13}^{2}v_{\Delta} \\ + \frac{1}{2}\lambda U_{21}V_{13}^{2}v_{s} + \lambda_{2}U_{21}V_{23}^{2}v_{\Delta} + \lambda_{3}U_{21}V_{23}^{2}v_{\Delta} - \lambda U_{31}v_{\phi}V_{13}V_{23} + \frac{1}{2}\lambda U_{31}V_{13}^{2}v_{\Delta} + \lambda_{6}U_{31}V_{33}^{2}v_{s} \end{split}$		
a^2G^2	$\frac{\frac{3}{2}\lambda_{1}V_{11}^{2}V_{13}^{2} + \frac{1}{4}\lambda_{4}V_{11}^{2}V_{23}^{2} + \frac{1}{4}\lambda_{5}V_{11}^{2}V_{23}^{2} + \frac{1}{2}\lambda V_{11}^{2}V_{23}V_{33} + \lambda_{4}V_{11}V_{13}V_{21}V_{23} + \lambda_{5}V_{11}V_{13}V_{21}V_{23}}{+\lambda_{11}V_{13}V_{21}V_{33} + \lambda_{11}V_{13}V_{23}V_{31} + \frac{1}{4}\lambda_{4}V_{13}^{2}V_{21}^{2} + \frac{1}{4}\lambda_{5}V_{13}^{2}V_{21}^{2} + \frac{1}{2}\lambda V_{13}^{2}V_{21}V_{31} + \frac{3}{2}\lambda_{2}V_{21}^{2}V_{23}^{2} + \frac{3}{2}\lambda_{3}V_{21}^{2}V_{23}^{2} + \frac{3}{2}\lambda_{6}V_{31}^{2}V_{33}^{2}$		
$a^2G^+G^-$	$\begin{aligned} \lambda_1 V_{13}^2 \cos^2 \beta + \frac{1}{2} \lambda_4 V_{13}^2 \sin^2 \beta + \frac{1}{4} \lambda_5 V_{13}^2 \sin^2 \beta + \frac{1}{\sqrt{2}} \lambda_5 V_{13} V_{23} \sin \beta \cos \beta \\ + \sqrt{2} \lambda V_{13} V_{33} \sin \beta \cos \beta + \lambda_2 V_{23}^2 \sin^2 \beta + \frac{1}{2} \lambda_3 V_{23}^2 \sin^2 \beta + \frac{1}{2} \lambda_4 V_{23}^2 \cos^2 \beta \end{aligned}$		
aG^3	$ \lambda_1 V_{11}^3 V_{13} + \frac{1}{2} \lambda_4 V_{11}^2 V_{21} V_{23} + \frac{1}{2} \lambda_5 V_{11}^2 V_{21} V_{23} + \frac{1}{2} \lambda V_{11}^2 V_{21} V_{33} + \frac{1}{2} \lambda V_{11}^2 V_{23} V_{31} \\ + \frac{1}{2} \lambda_4 V_{11} V_{13} V_{21}^2 + \frac{1}{2} \lambda_5 V_{11} V_{13} V_{21}^2 + \lambda V_{11} V_{13} V_{21} V_{31} + \lambda_2 V_{21}^3 V_{23} + \lambda_3 V_{21}^3 V_{23} + \lambda_6 V_{31}^3 V_{33} $		
ah^2G	$ \begin{array}{c} \lambda_{1}U_{11}^{2}V_{11}V_{13} + \frac{1}{2}\lambda_{4}U_{11}^{2}V_{23} + \frac{1}{2}\lambda_{5}U_{11}^{2}V_{23} - \frac{1}{2}\lambda U_{11}^{2}V_{23} - \frac{1}{2}\lambda U_{11}^{2}V_{23}V_{31} \\ + \lambda U_{11}U_{21}V_{11}V_{33} + \lambda U_{11}U_{21}V_{13}V_{31} - \lambda U_{11}U_{31}V_{11}V_{23} - \lambda U_{11}U_{31}V_{13}V_{21} + \frac{1}{2}\lambda_{4}U_{21}^{2}V_{11}V_{13} \\ + \frac{1}{2}\lambda_{5}U_{21}^{2}V_{11}V_{13} + \lambda_{2}U_{21}^{2}V_{21}V_{23} + \lambda_{3}U_{21}^{2}V_{21}V_{23} + \lambda U_{21}U_{31}V_{11}V_{13} + \lambda_{6}U_{31}^{2}V_{31}V_{33} \end{array} $		
$a\overline{ u} u$	$V_{23}m_ u/v_\Delta$		

WEI CHAO

Interactions with fermions

 $\overline{\nu_L^C}ia\lambda_{a\overline{\nu}\nu}\nu_L + h.c.$

 $\rightarrow \lambda_{a\overline{\nu}\nu}: V_{23}m_{\nu}/v_{\Delta},$

 $Y_E \overline{\ell_L} H E_R + h.c. \rightarrow$

 $\lambda_{aee} \bar{e} i \gamma_5 e$

 $\rightarrow \lambda_{aee} : V_{13} - \frac{m_e}{m_e},$ v_h

Majoron interactions from anomaly

Schemas

Majoron interactions from anomaly

Interactions in mass eigenstates

Neutrino oscillation in Majoron star

Effective potential

$$V_{\rm eff} = i \sqrt{2\rho_a} V_{23} m_a^{-1} v_{\Delta}^{-1} \cos(m_a t) \overline{\nu_L^C} m_\nu \nu_L + \text{h.c.}$$

Amplitude:

$$A_{\alpha \to \beta} = \sum_{i} \widehat{U}_{\beta i} \widehat{U}_{\alpha i}^{*} \exp\left[-i\frac{m_{i}^{2}x}{2E}\left(1 + \frac{\rho_{a}V_{23}^{2}}{m_{a}^{2}v_{\Delta}^{2}} + \frac{\rho_{a}V_{23}^{2}\cos 2m_{a}x}{2xm_{a}^{3}v_{\Delta}^{2}}\right)\right]$$

Direct detections of Majoron DM

Boosted Majoron by supernova ν

WEI CHAO

Differential event rate

Direct detections of Majoron DM

Direct detections in condensed

matter systems

DM mass	DM energy or momentum	CM scale
$50 { m MeV}$	$p_{\chi} \sim 50 \text{ keV}$	zero-point ion momentum in lattice
$20 { m MeV}$	$E_{\chi} \sim 10 \text{ eV}$	atomic ionization energy
$2 { m MeV}$	$E_{\chi} \sim 1 \text{ eV}$	semiconductor band gap
100 keV	$E_{\chi} \sim 50 \mathrm{meV}$	optical phonon energy

 $R \sim \frac{1}{\rho} \frac{\rho_a}{m_a} \frac{3m_a^2}{4m_e^2} \frac{g_{aee}^2}{e^2} \langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma}$

 $Im\Pi(\omega)$ $\langle n_e \sigma_{abs} v_{rel} \rangle_{\gamma} =$

Absorption rate for photon in material

WEI CHAO

Combined Constraints

Summary

Issue-I:

Issue-II

We have proposed a novel mass generation mechanism for Axion-like particles: explicit global symmetry breaking \rightarrow ALP mass

We have presented two very simple and natural models that can address the neutrino mass, the dark matter problem and the BAU simultaneously!

Thank you for your attention!

