



## Light Thermal Dark Matter Beyond *p*-Wave Annihilation in Minimal Higgs Portal Model

## Tian-Peng Tang (唐天鹏)

**Purple Mountain Observatory,** 

#### **Chinese Academy of Sciences**

Collaborated with Yu-Tong Chen, Shigeki Matsumoto, Yue-Lin Sming Tsai, and Lei Wu

#### 四川 西昌

May 10, 2024

## Outline

• A brief introduction to sub-GeV dark matter

 minimal dark matter model: one Majorana DM + one new singlet scalar mediator (arXiv: 2403.02721, accepted by JHEP)

• Summary

### WIMPs

#### For decades, WIMPs have been the preferred DM candidates



Rept.Prog.Phys. 81 (2018) 6, 066201

#### ► WIMPs naturally give correct relic density via freeze-out.



Models with NP at EW scale (e.g. Naturalness or Hierarchy Problem) often accommodate a EW scale DM candidate.

## WIMPs Crisis or MeV DM Opportunity?

#### Neutrino floor is coming and No evidence for WIMPs!



Rept. Prog. Phys. 2022, 85(5) 056201

- DM mass region above GeV is highly constrained by direct detection ;
- Sub-GeV DM still has a large parameter space;
- ► The search for sub-GeV DM is

turning to indirect detection.

## Future Indirect Detection : Great opportunity to explore MeV dark matter

GECCO (2112.07190)  $10^{-10}$ (Continuum Sensitivity)  $\times E_{\gamma}^{2} [MeV \text{ cm}^{-2} \text{ s}^{-1}]$ 3-sigma EGRAL  $t_{\rm obs} = 10^6 \ {\rm s}$  $10^{-}$ COMPTEL  $10^{-1}$ (Conservative) GRET  $10^{-5}$ GE Fermi  $10^{-6}$ (Expected) NuSTAR  $10^{-7}$  $10^{-2}$  $10^{1}$  $10^{-1}$  $10^{0}$  $10^{2}$  $10^{3}$  $10^{4}$  $E_{\gamma}$  [MeV]

| Telescope  | Status             | Energy Range      | Reference                   |
|------------|--------------------|-------------------|-----------------------------|
| INTEGRAL   | On 2002 October 17 | 15 keV to 10 MeV  | 0801.2086<br>1107.0200      |
| e-ASTROGAM | 2029               | 0.3 MeV to 3 GeV  | 1711.01265                  |
| COSI       | 2025               | 0.2 MeV to 5 MeV  | 2109.10403                  |
| GECCO      | ?                  | 0.1 MeV to 8 MeV  | 2112.07190                  |
| AMEGO      | ?                  | 0.2 MeV to 10 GeV | 1907.07558                  |
| VLAST      | ?                  | 100 MeV to 20 TeV | chinaXiv:202203.00<br>033V2 |

In the past few decades, there have been no good telescopes focused on the MeV Gap Fortunately, many new MeV telescopes have been proposed in recent years.

## The challenge to MeV Dark matter: CMB

Planck 2018 constraints on DM mass and annihilation cross section





s-wave 
$$(b = 0)$$

 s-wave dark matter annihilations with masses less than 1GeV would be difficult to escape CMB limits

#### p-wave (a = 0)

*p*-wave dark matter annihilation can satisfy the CMB but the cross section at the present time is too small to be observed.

Can we find a sub-GeV DM signal in future telescope but also escape from CMB limits ?

## **Basic and minimum Lagrangian**



## Cosmological & astrophysical constraints

## Collider experiments constraints

|                       | Likelihood    | Constraints                                                                                              |
|-----------------------|---------------|----------------------------------------------------------------------------------------------------------|
| Relic abundance       | Gaussian      | $\Omega_{\chi}^{\exp}h^2 = 0.1193 \pm 0.0014$ [19];                                                      |
|                       |               | $\sigma_{ m sys} = 10\% 	imes \Omega_{\chi}^{ m th} h^2.$                                                |
| Equilibrium           | Conditions    | either $(\Gamma_{\chi \text{SM}}^{\text{FO}} \ge H_{\text{FO}})$ , or                                    |
|                       |               | $(\Gamma_{\chi \rm SM}^{\rm FO} \ge H_{\rm FO} \text{ and } \Gamma_{\chi \phi}^{\rm FO} \ge H_{\rm FO})$ |
| DM direct detection   | Half Gaussian | $9 { m GeV} < m_{\phi} < 10 { m TeV}$ (LZ [12]),                                                         |
|                       |               | $3.5{\rm GeV} < m_\phi < 9{\rm GeV}$ (PANDAX-4T [13]),                                                   |
|                       |               | $60{\rm MeV} < m_\phi < 5{\rm GeV}$ (DarkSide [11]).                                                     |
| $	riangle N_{ m eff}$ | Half Gaussian | $\triangle N_{\mathrm{eff}} < 0.17$ for 95% C.L. [19]                                                    |
| BBN                   | Conditions    | if $(m_{\phi} \ge 2m_{\pi})$ then $\tau_{\phi} \le 1$ s [15],                                            |
|                       | Conditions    | if $(m_{\phi} \le 2m_{\pi})$ then $\tau_{\phi} \le 10^5$ s [16].                                         |

Based on previous work: JHEP 07(2019)050 (Red indicates update limits)

|             | $\phi$ signature | Constraints                                                                             |  |
|-------------|------------------|-----------------------------------------------------------------------------------------|--|
| Higgs decay | Prompt*          | See the upper limits of ${\rm BR}(h \to \phi \phi) {\rm BR}(\phi \to ll)^2$             |  |
|             |                  | from Fig. 12 of Ref. [19] and Fig. 7 of Ref. [23].                                      |  |
|             | Displaced*       | See Ref. [20, 21]                                                                       |  |
|             | Long-lived*      | $BR(h \to inv.)_{BSM} \le 0.145$ [24]                                                   |  |
| B decay     | Prompt           | ${ m BR}(B^{\pm} \to K^{\pm} \mu^{-} \mu^{+}) \lesssim 3 \times 10^{-7} \ [31]$         |  |
|             |                  | (1) $\sin^2\theta \gtrsim 2 \times 10^{-8}$ for the region                              |  |
|             | Displaced        | $0.5 < m_{\phi}/{\rm GeV} < 1.5$ and $1 < c\tau_{\phi}/{\rm cm} < 20$ [34]              |  |
|             |                  | (2) See Fig. 5 of Ref. [33] for details.                                                |  |
|             | Long-lived       | $P_p \text{ BR}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) \le 2.4 \times 10^{-5} \text{ [35]}$ |  |
| Kaon decay  |                  | (1) BR $(K^+ \to \pi^+ \mu^- \mu^+) \le 4 \times 10^{-8}$ [36]                          |  |
|             | Prompt           | (2) BR $(K_L \to \pi^0 e^- e^+) \le 2.8 \times 10^{-10}$ [37]                           |  |
|             |                  | (3) BR $(K_L \to \pi^0 \mu^- \mu^+) \le 3 \times 10^{-10}$ [38]                         |  |
|             | Displaced        | ced CHARM detected events $\gtrsim 2.3$ [43]                                            |  |
|             |                  | (1) BR $(K_L \to \pi^0 \nu \bar{\nu}) \le 3.0 \times 10^{-9}$ [25]                      |  |
|             | Long-lived*      | (2) See BR $(K^+ \to \pi^+ \nu \bar{\nu})$ limits from                                  |  |
|             |                  | Fig. 18 of Ref. [39] and Fig. 4 of Ref. [18] for details.                               |  |

## Result 01 : $(m_{\chi}, m_{\phi})$



## **Result 02:** $(m_{\phi}, |\sin\theta|)$



### **Result 03: Indirect Detection**



Only resonant state can be observed in future indirect detection experiments!

#### **Result 04: Indirect Detection with Breit-Wigner Resonance**



12

## SUMMARY

- Sub-GeV DM is a new window to be probed, and the parameter space is finite;
- The constraints are from CMB, cosmological observations, collider searches and direct detection experiments;
- We find that sub-GeV DM through p-wave can escape CMB constraint, but only the resonance state can offer a promising prospect in the future indirect detection.

#