The R&D of the Fast MCP-PMTs for High Energy Physics Detectors

Sen.QIAN

qians@ihep.ac.cn; On Behalf of the LPMT and FPMT R&D Group The Institute of High Energy Physics, CAS

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会

Conference on frontiers of underground and space particle physics and cosmophysics

2024年5月7日-11日,四川西昌

Outline

- 1. The Conventional PMTs
- 2. The 20 inch Large MCP-PMT (LPMT)
 - 2.1 The Design of LPMT;
 - 2.2 The Roadmap for the R&D of LPMT;
 - 2.3 The Application of the LPMTs;
- 3. The 2 inch Fast timing MCP-PMT (FPMT)
 - 3.1 The Roadmap for FPMT;
 - 3.2 The Performance of FPMT;
 - 3.3 The Beam Test Results;
 - 3.4 The CTR of FPMTs;
 - 4. Summary

1.1 The Conventional -- Small-MCP-PMT

➢ The Conventional small, fast timing MCP-PMT, FPMT

1.2 The Conventional -- Dyonde-PMT

The 20 inch Dynode PMT

The first PMT in the world in 1933 "Kubetsky' s tube"

How to improve the PDE of PMT?

Quantum Efficiency (QE) : 20% Collection Efficiency (CE) of Anode: 70%

Photon Detection Efficiency (PDE)= QE_{Trans} * CE = 20% * 70% = 14%

Outline

1. The Conventional PMTs

2. The 20 inch Large MCP-PMT (LPMT)

- **3.** The 2 inch Fast timing MCP-PMT (FPMT)
- **4.** Summary

2.1 the design of a Large MCP-PMT (2009)

High photon detection efficiency + Single photoelectron Detection + Low cost 1) Using two sets of Microchannel plates (MCPs) to replace the dynode chain 2) Using transmission photocathode (front hemisphere) ~ 4π viewing angle! and reflection photocathode (back hemisphere) 100% 100% 1.Insulated trestle table 2.Anode 3.MCP dodule 4.Bracket of the cables 5. Transmission Photoca 7 70% 6.Glass shell 8 70% 7. Reflection Photocatho 8.Glass joint 8 PD = QE_{Trans}*CE +TR_{Photo}QE_{Ref} *CE

Photon Detection Efficiency: $15\% \rightarrow 30\%$; $\times \sim 2$ at least !

2012 NIMA 695

2.2 The Roadmap -- (1) Technology

2.2 The Roadmap -- (2) Parameters

Characteristics (20inch)	unit	MCP-PMT Prototype(IHEP)	MCP-PMTs 15K pieces (NNVT)		
Electron Multiplier		MCP	MCP		
Photocathode Mode		reflection+ transmission	reflection+ transmission		
Quantum Efficiency (400nm)	%	26 (T), 30 (T+R)	32%		
Collection Efficiency		~99%	99%		
Detection Efficiency (400nm)	%	~ 27%	31.5%		
Detection Efficiency (420nm)	%	-	28.3%		
P/V of SPE		> 5	7.1		
TTS on the top point	ns	~15	~ 20		
Rise time/ Fall time	ns	R~2 , F~20	R~1.4 , F~24		
Anode Dark Rate	Hz	~30K	40K		
After Pulse Time distribution	us	0.1, 4.5	0.2 , 0.8 , 3 , 4.5, 17		
After Pulse Rate	%	2.5%	5.2%		
Glass	Low-Potassium Glass Low-Potassi				

2.3 The Application of LPMT --(1) JUNO

✓ The High PDE 20" MCP-PMT for JUNO

—JUNO (**Jiangmen Underground Neutrino Observatory**), has already supported the MCP-PMT collaboration group to R&D the 20 inch MCP-PMT from 2009 to 2020.

—Yifng Wang in IHEP is our group leader for this type of MCP-PMT development and the the company NNVT is the one to do the mass production work.

Parameters	MCP-PMT	Dynode-PMT		
Total number	15000	5000		
DE@420nm	28.3%	27.6%		
Dark Rate	~ 40KHz	~ 17KHz		
P/V	~7	~3		
2020 NIMA 952	; 2021 JII	NST 16 C11003		

2.3 The Application of LPMT --(2) LHAASO

✓ The FAST 20" MCP-PMT for LHAASO

 —LHAASO (Large High Altitude Air Shower Observatory), has already ordered 2270 pics 20" Flower-like-MCP-PMT.
—The 20 inch Prototype with potting has also post to the HyperK PMT Group in Tokyo University for the testing.
—The performance are different from the tubes for JUNO.

Parameters	JUNO	LHAASO		
Total number	15000	2270		
DE@400nm	30%	26.8%		
Dark Rate	~ 40KHz	~ 20KHz		
TTS	~20ns	~5.5ns		
2020 NIMA 977;				

2.3 The Application of LPMT ---(2) JNE

✓ The FAST 8" MCP-PMT for JNE

---The JNE (**Jinping Neutrino Experiment**) under construction is a hundred-ton liquid scintillator detector with Cherenkov and scintillation light readout at CJPL II.

--with 2400m rock overburden, JNE will study for the targeting solar, terrestrial and supernovae neutrinos

Parameters	20-MCP-PMT	8-MCP-PMT			
Experiment	LHAASO	JNE			
DE@400nm	26.8%	30%			
P/V	~ 3	~ 5			
TTS	~5ns	~1.5ns			
2023NIMA 1055					

Outline

- 1. The Conventional PMTs
- 2. The 20 inch Large MCP-PMT (LPMT)
- 3. The 2 inch Fast timing MCP-PMT (FPMT)
- **4.** Summary

3.1 The Roadmap for FPMT-- (1) Purpose

3.1 The Roadmap for FPMT -- (3) Prototypes

Since 2020, our team has successfully developed FPMT from single anode to multi-anodes, more optimization to single anode FPMT and 8x8 anodes FPMT.

3.2 The Performance -- (1) Single Anode FPMT

Ref. Sensor Actuat. A-Phys 318 (2021), NIMA 1041 (2022) 167333,

3.2 The Performance -- (2) 2X2 Anode FPMT

➢ 2*2 Anodes FPMT

Average waveform of SPE

SPE-TTS Spectrum

	HV/V	Gain	P/V	Amp(SPE)	RT	FT	Width	TTS@SPE	TTS@MPE
Photek 210	-4700	2.9E6	2.0	93 mV	96 ps	350 ps	190 ps	45 ps	10 ps
2X2-Anode	-2500	1.9E6	6.5	34 mV	243 ps	516 ps	378 ps	67 ps	17 ps

3.2 The Performance -- (3) 8X8 Anode FPMT

3.2 The Performance -- (4) CRW-FPMT

3.3 The Beam Test -- (1) Proton in Fermi

- Beam: 120GeV Proton (Fermi) •
- Crystal: LYSO & BGO
- **PMT: 8*8 FPMT**
- DAQ: CAEN V1742~50ps;
- Carried out by Zhenyu Ye (UIC) Zhihong Ye (THU)

LYSO single channel **Time Resolution**

Sigma: 158.5 ps

BGO single channel **Time Resolution**

Sigma: 149.8 ps

LYSO & BGO Coincidence Time jitter~64 ps Single tube Time jitter ~45ps

86

-2.007

0.09004

3.3 The Beam Test -- (2) Muon in CERN

Quartz Glass + FPMT \succ

Coincidence time jitter~ 56ps Single tube Time jitter ~40ps

- Beam: (CERN) 108GeV Muon
- Scintillator: Quartz Glass;
- **PMT:** 8*8 FPMT TTS = 50ps@SPE;
- DAQ: 15 GSa/s ~ 25ps

Ref. NIMA 1064 (2024) 169373

Amplitude [V] QuartzGlass-FPMT-1 QuartzGlass-FPMT-2 0.05 -3 -2 -1 5 Time [ns]

0.2

3.4 The Timing -- (1) FPMT-CTR test

- ✓ Radioactive sources: Sodium (22Na) ,
- ✓ Crystal: LYSO / Lead Fluoride (PbF₂)
- ✓ DAQ: Oscilloscope~25ps
- ✓ FPMT: 1CH- Anodes FPMT*2
- The Best Coincidence Time Resolution:

> CTR :FPMT+LYSO (3*3*5mm³)

Ref. 2022 J. Phys.: Conf. Ser. 2374 012132

Outline

- 1. The Conventional PMTs
- 2. The 20 inch MCP-PMT (LPMT)
 - 2.1 The Design of LPMT;
 - 2.2 The Roadmap for the R&D of LPMT;
 - 2.3 The HPD LPMT for JUNO;
 - 2.4 The Fast LPMT for LHAASO;
- **3.** The Fast timing MCP-PMT (FPMT)
 - 3.1 The Roadmap for FPMT;
 - 3.2 The Performance of FPMT;
 - 3.3 The CTR of FPMTs;
 - 3.4 The Proton Beam Test;
 - 4. Summary

4. Summary-- (1) The PMTs

4. Summary-- (2) The Group

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Institute of High Energy Physics, CAS

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

effort by Yifang Wang

和京大学

4. Summary--(3) The Photodetector Lab in IHEP

国家市场监督管理总局

谢谢!

Thanks for your attention!

Any Comment & Suggestion are welcomed!

The PMT Family in NNVT in China

THANKS

0101110001

See the unseen change the unchanged

N2+H2-WHB

Of al and al

dement

The Innovation

核电子学与核探测技术 & Radiation Detection Technology and Methods

Impact Factor=33.1@2023

00 000

INNOVATIO