

用于极低alpha放射性材料筛选的 Micromegas气体时间投影室

上海交通大学 张文铭

2024年5月8日

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会

地下稀有事例探测实验和本底

● 无中微子双贝塔衰变

- > CUORE
- ➤ 200 公斤 ¹³⁰Te
- $\triangleright \overline{\nu_e} == \nu_e$
- ▶ 晶体/铜表面污染

- ●暗物质探测
- ➤ PandaX-4T
- ▶ 4吨液氙(TPC)
- ➤ WIMP粒子
- > 铜和特氟龙表面污染
- > 探测器及管路材料表面的氡释气

中微子探测实验

- > JUNO
- ▶ 20 千吨液闪探测器
- 有机玻璃球表面,氢子体带来污染

L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009

- 20 kton LS detector
- 3% energy resolution
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino
 for Mass hierarchy and
 precision measurement
 of oscillation
 parameters
 - ⇒ Supernovae neutrino

 - ⇒ Solar neutrino
 - Atmospheric neutrino
 - Proton decay

- **参本底**
- > 宇宙射线及其衍生物
- > 实验室环境(高能伽马,中子)
- 探测器材料内部放射性和表面放射性引入本底(氢释气)零件加工组装,空气中的氢气及其子核会污染材料表面

低本底测量技术现状

	探测技术	典型测量对象	灵敏度	备注	
	电感耦合等离子体质谱仪 ICP-MS	高纯无氧铜内的 重元素	ppt	克量级取样,复杂化学预处理	
	中子活化分析 NAA	特氟龙内的 ²³⁸ U 和 ²³² Th	sub-ppt, ppt	利用中子辐照,测量窗口短	
	高纯锗伽马探测器 HPGe	高纯无氧铜内的 ²³⁸ U 和 ²³² Th	1-10 µBq/kg sub-ppb, ppb	无损检测,能量分辨率高	
	betaCage	大面积材料表面放射性	_	CDMS 合作组提出 尚未实现	
	SuperNEMO BiPo-3 探测器	薄膜材料内的 ²⁰⁸ TI 和 ²¹⁴ Bi	本底 ²⁰⁸ TI : 0.9±0.2 µBq/m² ²¹⁴ Bi:1.0±0.3 µBq/m²	SuperNEMO合作组开发	
	UltraLo-1800	大面积材料表面放射性	本底 1.4 mBq/m²	XIA 商用探测器	

低本底测量技术现状

XIA: UltraLo-1800

> 电离室

- 使用脉冲波形(上升时间、幅度和形状)鉴别侧壁、阳极和样品的α信号
- ightharpoonup 本底 $0.14 \, \mu Bq/\text{cm}^2$,针对半导体硅片的 α 测量
- ▶ 测量面积: 1800 cm²

● SuperNEMO: BiPo-3 探测器

▶ 塑闪

- > 本底 ²¹⁴Bi: 1.0±0.3 μBq/m²
- 本底 ²⁰⁸TI: 0.9±0.2 μBq/m²
- ▶ 测量面积: 3.6 m²

气体时间投影室技术和微结构气体探测器

●气体时间投影室 (TPC)

▶ 样品放置于内部,记录粒子能量、径迹信息

◎微结构气体探测器

➤ Readout: 20×20 cm²

FENG J, ZHANG Z, LIU J, et al. A thermal bonding method for manufacturing Micromegas detectors[J]. 2021, 989: 164958.

➤ 热压接Micromegas, 条读出

粒子径迹重建和信号-本底筛选

◉信号-本底筛选方法---Track-related

- » α 粒子的径迹近乎是一条直线, 径迹末端存在**布拉格峰**
- a. 借助径迹起点位置可识别并去除场笼及其附近的本底;
- b. 根据径迹方向可识别并去除读出平面的本底和一半的气体本底;
- c. 根据触发读出条的个数去除短径迹的粒子,很可能来自气体和读出平面。

由上往下的α径迹

由下往上的α径迹

参数据采集与获取系统(Cobo-Asad, Concentration
Board, ASIC Support and Analog-Digital conversion)

◎慢控监测系统 (电压、电流和气压)

探测器材料低本底处理

➤ 无氧铜阴极:去脂(碱性清洗剂Alconox)->酸洗(柠檬酸/双氧水)->超纯水冲干->氮气吹干->六十度烘干1

➤ 亚克力+柔性PCB场笼: Alconox擦拭->超纯水清洗->氮气吹干

➤ 铝合金内壁: Alconox擦拭->超纯水清洗->氮气吹干

> 气体: getter纯化

> 探测器内部结构

> 铜阴极处理流程

原型机的搭建和测试

● 原型机的搭建

➤ 铝合金腔体+亚克力铜条场笼+单块Micromegas (20×20 cm²)

原型机本底测试

Run	Flush rate L/min	Run time hour	Counts counts/hour	After cuts counts/hour
1	0.55	25.30	16.56 ± 0.81	4.35 ± 0.41
2	0.55	39.00	3.87 ± 0.32	0.38 ± 0.10
3	0.35	25.00	4.20 ± 0.41	0.32 ± 0.11
4	0.73	158.25	2.06 ± 0.11	0.20 ± 0.04
5	0.20	240.00	1.88 ± 0.09	0.10 ± 0.02
6	0.10	90.00	2.69 ± 0.12	0.23 ± 0.03

- 本底运行未放置任何样品,信号-本底筛选后剩余的本底事例 主要来自阴极铜板。
- \blacktriangleright 原型机的本底水平不高于: 0.13 ± 0.03 $\mu Bq/cm^2$, 与 UltraLo 1800 (0.14 $\mu Bq/cm^2$)基本持平。

全体积带电粒子谱仪设计和建造

全体积带电粒子谱仪

- ➤ 全体积时间投影室 (0.5-1.5 bar Argon/Xenon)
- ➤ 电荷读出面积: 40×60 cm² (2×3 Micromegas)
- ➤ 漂移距离: 10 cm (容积24L)
- ➤ 柔性 PCB场笼+Cobo-Asad electronics
- ▶ 样品直接放置于阴极板,保证阿尔法能量完全沉积

读出平面Micromegas

探测器内部实物图

Cobo-Asad

探测器外部实物图

全体积带电粒子谱仪的初步测试

●宇宙射线Muon测试

▶ 检查探测器运行情况,监测探测器长时间稳 定运行

▶ 使用宇宙线Muon粒子 (MIP粒子) 对探测器读出平面进行 增益分析

全体积带电粒子谱仪的初步测试

● Alpha刻度 (Am-241源)

α径迹起点分布二维图
使用Am-241源对各个Micromegas模块进行增益刻度

增益随漂移场变化

增益随气体流速变化

▶ 利用Am-241能谱的5.485MeV能峰刻度探测器,扫描 倍增场、漂移场、气体流速,优化探测器工作条件

全体积带电粒子谱仪的本底测量

◎探测器内在α本底测试 (铜阴极+气体)

测试气体---1bar Ar-7%CO₂ (0.1 L/min)

本底计数

- 全体积TPC(铜阴极+气体) α本底: (0.27 ± 0.02)×10⁻⁶ Bq/cm² (Track-related 筛选alpha 本底: 能量1-10MeV, 径迹方向朝上, FV cut 2.7cm排除掉来自场笼的本底)
 - ●多轮探测器全体积TPC α本底测试(μBq/cm²)

充氩气静置一个月

酸洗铜阴极

更换亚克力场笼 (减少亚克力材料体积)

 $1.29 \pm 0.06 \longrightarrow 0.82 \pm 0.06 \longrightarrow 0.47 \pm 0.03 \longrightarrow 0.27 \pm 0.02$

> Track-related 筛选alpha本底:能量1-10MeV,径迹方向朝上,FV cu

2.7cm排除掉来自场笼的本底

亚克力表面阿尔法放射性测量

●亚克力样品测试 (JUNO生产)

α径迹起点分布二维图

- ➤ 亚克力样品6块5*25 cm²: 10.31-11.01于隧道环 境中打磨, Rn~250Bq/m³
- ▶ 打磨流程: 打磨掉表层-水抛-贴膜 撕膜-酸洗-超声波清洗-贴膜

- 本底计数 Measure time [hr]

 本底计数 Measure time [hr]

 沙汉气体---1bar Ar-7%CO₂ (0.1 L/min)
- > 亚克力样品+气体的α放射性: 0.20 ±0.02 μBq/cm²
- > Cu阴极+气体的α本底: 0.17 ± 0.02 μBq/cm²
- \rightarrow 估计亚克力样品的α放射性: $0.03 \sim 0.20$ μBg/cm²

亚克力表面阿尔法放射性测量

●亚克力样品测试 (JUNO生产)

	普通亚克力	低本底亚克力 (塑料贴膜)	低本底亚克力 (牛皮纸贴膜)	低本底亚克力1 (塑料贴膜+打磨)	低本底亚克力2 (塑料贴膜+打磨)
Measure area [cm ²]	600	1000	500	750	750
Measure time [hr]	45	68	42	203	250
Contamination of sample + gas [μBq/cm²]	1.00 ± 0.1	0.60 ± 0.05	0.86 ± 0.1	0.20 ±0.02	0.24 ± 0.02
Background of cathode Cu + gas [μBq/cm²]	0.48 ± 0.03	0.50 ± 0.03	0.38 ± 0.03	0.17 ± 0.02	0.17 ± 0.02
Estimated contamination of sample [μBq/cm²]	0.52~1.00	0.10~0.60	0.48~0.86	0.03~0.20	0.07~0.24

[▶] Track-related 筛选alpha本底:能量1-10MeV,径迹方向朝上,FV cut 2.7cm排除掉来自场笼的本底

● 极低本底带电粒子谱仪

- ▶结合气体时间投影室技术和热压接Micromegas电荷读出模块
- ▶粒子径迹鉴别降低本底
- ▶大幅面、高探测效率、高灵敏度
- ▶测量JUNO低本底亚克力表面α放射性: 0.03 ~ 0.20 μBq/cm²

探测器与屏蔽体

●下一步计划

- ▶进一步降低探测器内在本底,提高谱仪灵敏度;优化设计,简化操作流程
- ▶开发电子信号-本底筛选办法,开展10~500keV电子信号探测
- >安装屏蔽体,在锦屏地下实验室开展低本底材料表面放射性测量和筛选

备注

备注

◉气体系统 (充气、循环)

