

Design and Production of Readout Electronics for the 20-inch PMTs of JUNO experiment

Jun Hu IHEP, CAS On behalf of LPMT Electronics Group 2024.5.9

JUNO experiment (Jiangmen Underground Neutrino Observatory)

2

The JUNO detector

JUNO LPMT electronics Specification

Main challenges:

- Excellent energy resolution: 10% @ 1-100 pe, 1% @ >100 pe
- Excellent photon arrival time measurement
- A large dynamic range: 1-4000 pe (7.5mV-7.5V)
- A negligible dead-time for supernova event
- Huge number of channels: ~20000 LPMT channels
- Aerospace-grade reliability requirements : less than 0.5% underwater electronics failure over 6 years
- Specification:
 - Provide full waveform digitization with high speed (1 Gsps) and high resolution (12-14 bits) ADC
 - Measure photon pulses with high resolution (full dynamic range: 1-4000 pe)
 - Global trigger and self-trigger support
 - Real-time charge and time calculation
 - System synchronization
 - Operate single PMT trigger at 50-100 kHz single trigger rate, and allow to stand high rates for very short times (up to 1 MHz for 1 s)
 - Safe remote reprogramming support
 - Over-voltage protection, independent channel power control
 - Power consumption: <10W/channel

• Low voltage power supply(LV). 5

LPMT electronics group

6

Global Control Unit (GCU)

Component side

Cooling side

Analog-Digital Front-end Unit (ADU)

(by 孙芸华)

Back-end transmission

TTIM DAO BEC Synchronization CAT6 FTP 62.5MHz Clock 125MHz Trig +TTC dow 125 MHz TTC 125MHz Ethernet CAT5e UTP Hit ч GCU

CAT6 FTP for synchronization

- FPGA drives signals to the cables
- Cable Equalizer receives the signals from the cables
- Synchronized 62.5MHz clock fan-out to GCUs
- Real-time Hit information upload to TTIM
- TTC protocol transmits real-time global trigger and 1588 protocol for clock alignment

CAT5e UTP for Ethernet readout

- IPBUS&TCP protocol on FPGA
- RGMII interface to PHY

Cable pairs	BERs(60hours)				
1,2 (GCU1/2)	No loss of lock	No loss of lock			
3,6 (BEC)	<3.70X10 ⁻¹⁴	<3.70X10 ⁻¹⁴			
4,5 (GCU1/2)	<3.70X10 ⁻¹⁴	<3.70X10 ⁻¹⁴			
7,8 (BEC)	<3.70X10 ⁻¹⁴	<3.70X10 ⁻¹⁴			
PRBS test with 100m cables 10					

FPGA firmware logical structure

Main function block

- Clock generator
- Analog to digital conversion unit (ADU)
- Storage management
- Data processing logic
- Synchronization link
- Ethernet protocol
- High voltage unit control
- Control and status registers

Splitter of 2 channels

Isolator for HV signal and PW on GCU side

() GND

Cour

FPGA

on GCU

24VIN

(by 王仰夫)

Cooling mechanical design

- Goals: Keep the case temperature of the component lower than 30°C (under ~25W, ambient temp: 22°C)
 - Features:
 - The bottom side of PCB serves as the primary heat transfer path.
 - BGA chips on the bottom side will transfer heat via the chips' top.
 - QFN chips on the top side will transfer heat via the copper block under the chips.
 - Additional copper blocks are placed close to DC-DC to aid in heat dissipation.

(by 王仰夫)

underwater box with long bellows

Back-End Card (BEC)

- The Back-end Card makes the connections between the GCUs and the trigger electronics via CAT6 cables.
- Red box: Base board receives 48 Ethernet cables from underwater boxes. (by 杨一帆 from ULB)
- Blue box: Trigger/Timing interface mezzanine (TTIM) distributes the CLK signal to GCUs and transfers the TRG signal between Global Trigger and GCUs. (by 董建蒙from Tsinghua)
- Synchronous link: fixed latency link. Timing and trigger control (TTC) protocol. Nominal link speed 125 Mbps.

Front-end performance

- Electronics test with self-test pulse
 - Noise: < 400uV HG (SPE:7.5mV)
 - Linearity: < 0.5% HG
 - Energy Resolution: < 10%

	CH1 LG	CH1 HG	CH2 LG	CH2 HG	CH3 LG	CH3 HG
Gain	0.079	0.54	0.078	0.54	0.078	0.53
Input noise (mV)	2.54	0.39	2.66	0.39	2.28	0.37
Linearity (%)	1.27	0.43	1.09	0.32	1.24	0.29
Energy Res (%)	0.38@	6.81@	0.35@	5.77@	0.4@	5.76@
	100pe	~1pe	100pe	~1pe	100pe	~1pe

Cooling test

GCU temp. distribution (CFD simulation)

Water tank in IHEP

40m swimming pool in Italy

Tca(case-to-ambient)	DC-DC	Jitter cleaner	ADC	FEC	LDO	
In 19.2℃ air	28.6	26.6	26.5	26.6	26.9	
in 20.5°C water	6.0	6.9	6.4	5.9	5.9	

All chips are less than 30 °C in 20.5°C water

Integration Test

IHEP, Beijing

Padova, Italy

Zhongshan

UWB production (2021.1-2022.10)

Production in Shenzhen

GCU & splitter board

flatness check of the heat sink

GCU module after assembly

Electrical testing fixture

Test software GUI

Package for transportation 21

Production in Kunshan

Argon-arc welding

Assembly in box

Long term test

Leak check

Cable threading

Electrical testing fixture

Package to JUNO

Production summary

- Shenzhen produces 6950 GCU modules at a yield rate of 99.22%
- Kunshan produces 6883 UWBs at a yield rate of 98.27%
- We require 6681 UWBs on the SS, with ~3% spare, including OSIRIS, prototypes, etc.

Installation on JUNO site

(supervised by 樊磊)

LPMT Electronics installation

Transportation to underground

Installation on the steal structure

Nitrogen room

Leak check and refection test

Connected to racks in Electronics room

2074(CD)+ 177(VETO) LPMT UWBs were installed. (~30%) 25

(by 于泽源)

Commissioning test

Electronics room after installation

Light off test

Electronics noise

- RMS of baseline: 4% of SPE amplitude
- RMS of integration: ~2.5% of SPE integral

Summary

- Due to JUNO high scientific objectives, the LPMT readout electronics have stringent requirement, including a large number of channels, high resolution, high reliability.
- The production of the electronics components has been completed with a high yield rate.
- The installation is currently in progress.
- Premilitary tests demonstrate the high performance of electronics.

Thank you for your attention!

BACK UP

Remote Reprogramming Support

- Dedicated Spartan 6 FPGA for remote update firmware
- Implement a 2-port Ethernet hub in Spartan 6.
 - Main data path is connected to K7 port.
 - JTAG reconfiguration data is connected to S6 port.
- Implement the RGMII interface between PHY chip and S6, also between S6 and K7.
- The Ethernet communication between PC and GCU is successful.

System Reliability Estimation

	FIT	30° C	35° C	40°C	
affect 1	HV + Splitter Board	<u>23.5@2kV</u> + 0.21	38@2kV + 0.21	57@2kV + 0.21	Sum is F_fro
	ADU	14	22.7	34	
	Front Bellows	0.5	0.5	0.5	
	Connector (double Viton O- ring)	<12.1x3	<12.1x3	<12.1x3	
	GCU	76.4	88.5	100	Sum is E ha
	Back Bellows	0.5	0.5	0.5	00111101_00
	Electronics box	1	1	1	

Temperature [°C]	F_front	F_back	Failure channels in 6 years
30	>38	>115	>180
35	>61	>127	>210
40	>91	>138	>250

Note: 2 pieces of DDR are not included