

张杰 (中国科学院高能物理研究所)

<u>第三届地下和空间粒子物理与宇宙物理前沿问题研讨会</u>

2024-05-08

WHAT ABOUT FPGAS FOR PHYSICS EXPERIMENTS?

Workloads for FPGA:

- Front-end Electronics Control
 - Fast Control
 - Slow Control
- Clock Synchronization
- Monitoring
- Data Acquisition
 - Signal processing, filtering

Trends:

- Machine Learning (Deep Learning)
- Data Analytics

Source: Deeper, Faster Learning with FPGA Co-Processors

MOTIVATION

- The data volume of physics experiments need to reduce, PB/year to ?
- Finding new physics requires massive increase of processing power, much more flexible algorithms in software and much faster interconnects

WHAT IS XTCA?

The dimension of a xTCA crate is depending on:

- Numbers and sizes of slots
- Cooling concept
- Heat dissipation
- Request for redundancy

ATCA Shelf

MTCA Shelf

AMC modules

- Fully integrated into the ATCA • **IPMI** management structure
- Hot Swap capability •

MICROTCA.4 GROUPING

- Divided into three groups, in each group:
 - 3 AMCs with RTM
 - FPGA boards
 - 1 CPU board
 - 4-core Xeon Processor E3-1505M (3GHz)
 - ConCurrent Technologies AM G64/472-51
 - Vadatech AMC725

FPGA BOARD (AMC+RTM)

• uRTM-v2

• u4FCP-vl

u4FCP & uRTM:

FPGA-based MicroTCA compatible AMC board

- For generic system control and data acquisition in HEP/HEPS experiments
- Conceived to serve a mid-sized system residing either
 - inside a MicroTCA crate or
 - **stand-alone** on desktop with high-speed optical links or Ethernet to PC
- HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
- The red lines are high-speed serial links connected to the <u>gigabyte transceivers</u> (<u>GTY/GTH/GTX</u>) of the FPGA. The blue lines are the general input/ outputs connected to the High Performance (HP), High Range (HR) or High Density (HD) banks of the FPGA.
- More details:
 - <u>https://github.com/palzhj/u4FCPv2</u>

FEASIBILITY

- AMC+RTM boards
 - With various FMC cards

QSFP28 x2

QSFP28 x2

SFP + x4

QSFP28 x2

ADC FMC board

•

- 16 single-end channels •
- 125 MHz analog bandwidth .
- DC coupled analog input •
- 12/16-bit Σ - Δ ADC •
 - Raw sample rate up to 2 GSps

Applications – JUNO TAO Experiment

- The Taishan Antineutrino Observatory (TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO), located in the southern China, expected to start collecting data in 2024.
- TAO consists of a spherical ton-level Gadolinium-doped Liquid Scintillator (Gd-LS) detector (1.8 m diameter) at \sim 30 m from a reactor core of the Taishan Nuclear Power Plant (4.6 GW) in Guangdong.
- By means of 10 m² SiPM covering the spherical LS, the **reactor antineutrino spectrum** will be measured with a sub-percent energy resolution ($\leq 2\%$ / \sqrt{E} MeV).

- **Electronics**
 - **In-detector**
 - > Discrete readout (ROMA TRE): 2 channels/SiPM tile
 - **Off-detector**
 - ➢ 6 uTCA.4 crates
 - Each crate has 12 slots and will be mounted with 11 Front-end **Electronics Controller (FEC) boards**
 - 9 FEC boards with 4 ADC FMC cards
 - » Each ADC FMC card supports 32 channels (ROMA TRE)
 - 2 FEC board with 3 ADC FMC cards and 1 WR FMC card
 - 1 spare slot is reserved for veto/ redundancy/backup/debugging

Total: up to 8064 ADC channels

- Each crate supports up to 1344 ADC channels _
 - $= 6 \times (9 \times 4 \times 32 + 2 \times 3 \times 32) = 6 \times 1344 = 8064$
- Note: project requirement is 8048 ADC channels

CLOCK REDUNDANCY CONSIDERATION

- Due to the life limit of fiber optic transceivers, we plan to use a redundant WR clock
- Each uTCA crate has two WR slave nodes
- Clock source selection
 - WR node report the loss of lock

Ref clock

master

CLOCK DISTRIBUTION IN MICROTCA

Two clock allocation schemes inside the crate

- Port 17 ?
 - Native R9 crate with WR Support
 - MLVDS multi-drop connection

- TCLK ?
 - TCLKB (slot12)-> MCH (NAT-MCH-PHYS80) -> TCLKA (slot1-11)

Mini-WR FMC for System-level clock synchronization

CLOCK DISTRIBUTION IN NICROTCA AMC with mini-WR fixed in slot 12, move AMC receiver

Receiver is fixed at slot 2, add more adjacent AMC boards

- TCLK scheme has deterministic skew, but more jitter
- Port17 scheme has smaller jitter, but the skew is related to the location and receiver quantity

High Energy Photon Source (HEPS)

- Fourth-generation synchrotron light source
- Under construction in Huairou District, Beijing
 - Start the user operation in 2026
- Key-parameters for beam

Parameters	Nominal
Beam energy	6.0 GeV
Emittance	better than 0.06nm×rad
Beam	Higher than 1×1022 phs/s/mm2/mrad2/0.1%BW
Spatial resolution	10 nm
Energy resolution	1 meV
Photon energy	Up to 300keV

- HEPS Phase I plans 14 beamlines with the area array pixel detector in 2025
 - Detectable energy range: 8-20 keV
 - Spatial resolution: 140 µm
 - Total pixels: 6M, 2M, 1M, & 150K
 - Frame rate: Up to 2 kHz
 - Ref: http://english.ihep.cas.cn/heps/index.html

Hybrid Pixel Detector

100 200 300 400 500 600 700 800 900 1000

Dynamic image

- Image recorder
 - Assembled from multiple front-end modules
- Front-end modules
- Sensor
 - An array of individual pixels arranged in a grid pattern
 - Convert the incident radiation into electrical signals
- Readout ASIC
 - An array of individual pixels match with sensor
 - Amplify electrical signals and process to generate a digital image or data
- Module hybridization
 - One sensor **bump-bonded** with multiple readout AISCs

Single Module Test

- Single module passed the preliminary tests
 - All functions are as expected
 - Reliability tests in progress

Threshold scan before calibration

Threshold scan after calibration

Preliminary X-ray image (uncalibrated) A leaf exposed by an Au X-ray tube with 15 kV and 200 μ A current for 0.3s

Prototype Systems Evolution

	1 st BPIX (2015-2016)	2 nd BPIX (2017-2018)	3 rd BPIX (2019-2021)	4 th BPIX (2022-now)
Modules	6	16	24	40
Pixels	360K	~1M	1.4M	6M
Assembly Scheme	Wire bonding & Rigid-flex PCB	Wire bonding & Rigid-flex PCB	Through Silicon Via (TSV) & Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding & HTCC (High Temperature Co-Fired Ceramic)
Dead Area Occupancy	26.3%	26.3%	11.8%	~9.3%
FPGA Board	Spartan6 + SFP	Kintex7 + DDR3 + Molex Nano-Pitch I/O [™] Cable	Kintex7 + DDR3 + Molex Nano-Pitch I/O [™] Cable	UltraScale Kintex Plus + DDR4 + <mark>MicroTCA.4</mark>
DAQ Interface	1G Ethernet x12	1/10 G Ethernet x4	10G Ethernet x4	100G Ethernet x2
Power	100W	370W	500W	<2500W

Prototype Systems Evolution

	1 st BPIX (2015-2016)	2 nd BPIX (2017-2018)	3 rd BPIX (2019-2021)	4 th BPIX (2022-now)
Modules	6	16	24	40
Pixels	360K	~1M	1.4M	6M
Assembly Scheme	Wire bonding & Rigid-flex PCB	Wire bonding & Rigid-flex PCB	Through Silicon Via (TSV) & Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding & HTCC (High Temperature Co-Fired Ceramic)
Dead Area Occupancy	26.3%	26.3%	11.8%	~9.3%
FPGA Board	Spartan6 + SFP	Kintex7 + DDR3 + Molex Nano-Pitch I/O [™] Cable	Kintex7 + DDR3 + Molex Nano-Pitch I/O [™] Cable	UltraScale Kintex Plus + DDR4 + MicroTCA.4
DAQ Interface	1G Ethernet x12	1/10 G Ethernet x4	10G Ethernet x4	100G Ethernet x2
Power	100W	370W	500W	<2500W

Electronics System Architecture (Baseline)

On-detector

- **FPGA AMC board** •
 - **Front-end Electronics Control** ____
 - **Clock Synchronization**
 - Monitoring ____
 - **Data Acquisition** _

—

—

Data sorting

Data compression

Real-time algorithm

Electronics System Architecture (Alternative)

Control & monitor

Use the MCH with 40/100GbE switch to replace the commercial network switch

• More compact

Options:

- NAT, NAT-HUB-E
- Vadatech, UTC056-500-212-110

More Applications – SHINE STARTLIGHT Detector

- Shanghai HIgh repetitioN rate xfel and Extreme light facility (SHINE)
- Under construction in Zhangjiang, Shanghai
 - Start the user operation in 2026
- 3 beamlines and 10 end-stations
- One end-station for area array detector with silicon pixels
 - Detector: STARTLIGHT (SemiconducTor Array detectoR with Large dynamic ranGe and cHarge inTegrating readout
 - ASIC: HYLITE (High dYnamic range free electron Laser Imaging deTEctor)

Specs	STARLIGHT
Pixel size	100 μm X 100 μm
ASIC Pixel Array	128 X 128
Gain	Self-adaptive 3 gains
Dynamic range	1 ~ 10000 photons/pulse @12 keV
Frame rate	12 kHz (continuous readout)
Detector	A 4.2M pixel detector in vacuum, quadrant movable

Challenge: Continuously data stream up to 654.3 Gbps

SUMMARY

- MicroTCA architecture
 - Suitable for small and medium-sized experiments
- uFC series boards
 - FPGA-based MicroTCA compatible AMC board
 - For generic system control and data acquisition in physics experiments
 - HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
 - Successfully demonstrated the feasibility of the uFC
- Outlook
 - High-level tools for software development productivity
 - Vivado HLS, OpenCL, etc.
 - Applications in physics experiments
 - Need the cooperation with PHY/SIM/DAQ/Online-tracking groups
 - Long-term experience with respect to reliability and availability

MICROTCA.4 CRATE WITH MCH, CPU AND FPGA BOARDS

Back View

Front View

NOUNS

• **IP**, Intellectual Property

In electronic design a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or integrated circuit (commonly called a "chip") layout design that is the intellectual property of one party.

 DMA, Direct memory access DMA is a feature of computer systems that allows certain hardware subsystems to access main system memory (random-access memory), independent of the central processing unit (CPU).

• XDMA, DMA from Xilinx

- RTL, register-transfer level In digital circuit design, RTL is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals.
- **NVMe SSD**, Non-Volatile Memory Express Solid State Drives
- **Iperf**, is a network testing utility helpful for determining network performance.

KEY BENEFITS TO FPGA COMPUTING

- Balances programmability and high performance for key workloads
- Utilizing FPGA technology as a utility, resulting in faster access to the newest technology

Source: Xilinx Technical Marketing

FPGA SHELL OPTIONS

Xilinx SDAccel Based Shell

- Scenario: Rapid development, block computing
 - User logic: OpenCL C, HLS C and RTL supported
 - Suited for quick evaluation/porting of existing customer code
- Shell feature:
 - Xilinx scatter-gather XDMA optimized for big block data transfer
 - Serial message notification
 - Offload acceleration

BACKPLANE TOPOLOGY

N.A.T NATIVE-R9-WR Crate

Port 0: 1GbE

- Port 1: Redundant 1GbE
- Port 2~3: Internal links
- Port 4~7: PCIe x4
- Port 8~11: Redundant PCIe x4
- Port 12~15: Internal links
- Port 17~20: Triggers, Clocks or Interlocks
- TCLKA, TCLKB: System clocks
- TCLKC, TCLKD: Redundant system clocks
- TCLKD: PCIe reference clock

uFC Series Board

	UFC A01
The second secon	
	and
	- <u>-</u>
	, ^m
	1.44
	A
Contraction of the second seco	

uFC v2

- Xilinx Kintex-7 28nm 7K325T
 - 0.32 Million System Logic
 - 840 DSP
- PCle2.0 x4
- 8GB DDR3 800MHz SDRAM ECC
- (8+2)*10G High-Speed Serial Links

u4FC&P v1

- Kintex Ultrascale+ 16nm KU11P
 - 0.65 Million System Logic
 - 2928 DSP
- 4*PCIe4.0 x4 + PCIe4.0 x8
- 2*16GB DDR4 1200MHz SDRAM ECC
- 4*40G/100G High-Speed Serial Links

u4FC&P v2

- Kintex Ultrascale+ 16nm KU15P
 - 1.14 Million System Logic
 - 1968 DSP
- SAMTEC Firefly x3 + PCIe4.0 x8
- 2* 16GB DDR4 1200MHz SDRAM ECC
- 8*40G/100G High-Speed Serial Links

Name	Instance Specs					
	Status	FPGA	Memory	NVMe	PCIe BW	Network
uFC v2	Ready	7K325T	8GB	-	2 GB/s	10GbE
uFC&P v1	Ready	KU11P	2*16GB	4*(up to 4TB)	8 GB/s	40/100GbE
uFC&P v2	R&D	KU15P	2*16GB	-	8 GB/s	40/100GbE

Ref1: <u>Zhang, J., et al. (2023)</u>. TNS **70(6): 935-940**. Ref2: <u>Zhang, J., et al. (2019)</u>. TNS **66(7): 1169-1173**.

COMMUNICATION EVALUATION

- FPGA connects NVMe SSD directly with file system
 - Without CPU or external memory.
 - It is the best solution for applications which require huge capacity and ultra high-speed.
 - NVMe-IP: FAT32 or exFAT
 - From Design Gateway Co., Ltd
 - Tested via Xilinx KCU105 evaluation board

NVMe SSD M.2	HP EX900	Samsung 970 EVO	Samsung 970 PRO
Writing Speed from datasheet	1300 MB/s	Up to 2300 MB/s	Up to 2300 MB/s
NVMe-IP Tested Average Writing Speed	80~100 MB/s *	~800 Mb/s *	~2200 MB/s
@ Block size: 128 KB			

FPGA Firmware

- Config & monitor via UDP/IP
- Readout via TCP/IP

Key Parameters of the Pixel Detectors for HEPS and SHINES

	HEPS BPIX-6M	SHINE STARLIGHT
Mode	Photon counting readout	Charge-integration
Pixel size	140 µm x 140 µm	100 µm x 100 µm
Total pixel	5.9M	4.2M
Modules	40	16
ASICs per module	6 x 2	8 x 2
ASIC Pixel Array	128 x 96	128 x 128
Data length per pixel	28 bit	13 bit
Total detectable area	403.2 mm x 286.72 mm	204.8 mm x 204.8 mm
Frame rate (Max.)	1 kHz	12 kHz
Peak data rate from electronics to DAQ	165.2 Gbps	654.3 Gbps