# 无中微子双贝塔衰变实验中 计数法与拟合法的对比

JESEC BELLE

### 付昊阳

清华大学 工程物理系 近代物理研究所

fu-hy21@mails.tsinghua.edu.cn









- 锦屏500吨探测器0νββ研究本底
- 分析方法及对比结果







## 常见Ονββ实验类别

时间投影室

### 优势: 拥有径迹重建能力,在 0vββ实验中将双贝塔事 例筛选出来



PandaX

**NvDEx** 

辐射量热器

优势: 极高的能量分辨率,在 **0vβ**β实验中大幅减少内禀 的2vββ本底的影响



CUORE



CUPID

液体闪烁体探测器 优势: 体量可以达到万吨量级, 在**0vββ**实验中具备曝光 度上的优势





KamLAND

JUNO



## 两类分析处理方法

#### 能谱拟合法 计数法 KamLAND-Zen发表的能谱拟合示意图 统计Rol内 doi: 10.1103/PhysRevLett.130.051801 事例数N<sub>Rol</sub> F(a) Singles Data — Total <sup>136</sup>Xe 0νββ (90% C.L. U.L.) ······ Total $(0\nu\beta\beta$ U.L.) -·- Carbon spallation + <sup>137</sup>Xe $^{136}$ Xe $2\nu\beta\beta$ Xenon spallation products Event/0.05 MeV $10^{4}$ Internal RI 计算信号S **IB/External RI** Solar neutrino E8+CC 的灵敏度 $0^{2}$ Data 测量Rol内 $10^{0}$ 本底指数BI 2 3 4 Visible Energy (MeV) 计数法流程

自强不息 厚德载物

Tsinghua University



## 半衰期灵敏度与本底数

• 以液闪探测器中计数法估算灵敏度为例:





目录



## • 锦屏500吨探测器0νββ研究本底

- 锦屏500吨探测器简介
- 2vββ本底
- 太阳中微子本底
- 天然放射性本底
- 分析方法及对比结果





## 锦屏中微子实验百吨探测器示意图

## 中心探测器:

- 500 m<sup>3</sup> 容积
- 有机 无机两用
  - 力学结构可承受
     纯水密度±20%
     的液体



7

## MCP-PMT + 集光器:

- 8英寸,约3800支
- 约50% 覆盖率
- 30% 量子效率
- TTS < 1.8 ns



## 双贝塔衰变本底与能量分辨率

- 0νββ反应一定伴随着2νββ本底
- 2vββ反应过程:
   (A,Z) → (A,Z + 2) + 2e<sup>-</sup> + 2v<sub>e</sub>
- 对2vββ本底, 探测器的能量分辨率是 最重要的影响因素
- 右图为<sup>150</sup>Nd在能量分辨率分别为1% 和10%条件下, 2νββ与0νββ的两电子 总动能能谱示意图





- 非径迹重建实验中的太阳中微子本底
- 太阳中微子在非径迹重建实验中产生的本底主要来自其与 探测器中电子发生的NC和CC(仅ve)散射过程

*NC*: 
$$v + e^- \rightarrow v + e^-$$
  
*CC*:  $v_e + e^- \rightarrow v_e + e^-$ 

对锦屏500吨探测器:

厚德载物

自强不息

太阳<sup>8</sup>B v<sub>e</sub> 的ES本底事例率为805.93 yr<sup>-1</sup> 在2~3 MeV附近约为 0.02 yr<sup>-1</sup> keV<sup>-1</sup>







自强不息

厚德载物



天然放射性本底

- •考虑铀系、钍系和<sup>40</sup>K的本底,其在锦 屏500吨探测器不同成分中的含量:
- •为减少计算时间,对铀钍系只模拟了沉积能量在2 MeV以上的成分,包括:

<sup>228</sup>Ac, <sup>212</sup>Bi, <sup>214</sup>Bi, <sup>208</sup>Tl, <sup>210</sup>Tl, <sup>234</sup>Pa

| 材料          | $^{238}U[g/g]$        | $^{232}Th[g/g]$       | $^{40}K[g/g]$         |
|-------------|-----------------------|-----------------------|-----------------------|
| 液体闪烁体       | $1 \times 10^{-16}$   | $1 \times 10^{-16}$   | $1 \times 10^{-18}$   |
| 亚克力         | $6 \times 10^{-13}$   | $1.6 \times 10^{-12}$ | $1 \times 10^{-18}$   |
| 不锈钢(304L)   | $3.7 \times 10^{-10}$ | $2.8 \times 10^{-9}$  | $4.5 \times 10^{-7}$  |
| 水           | $5 \times 10^{-14}$   | $5 \times 10^{-14}$   | $1 \times 10^{-14}$   |
| 光电倍增管玻<br>璃 | $7.78 \times 10^{-8}$ | $1.72 \times 10^{-7}$ | $9.62 \times 10^{-9}$ |
| 岩石(保守估计)    | $8.1 \times 10^{-7}$  | $2.46 \times 10^{-7}$ | $3.23 \times 10^{-7}$ |



## 总能谱示意图

自强不息 厚德载物









- 锦屏500吨探测器0νββ研究本底
- 分析方法及对比结果
  - 能谱拟合法
  - 计数法
  - 对比结果





## 能谱拟合法









• 根据*BI*得到Rol内本底数 $B_0$ , 当 $B_0 \gg S$ , 信号数S的灵敏度: >  $n_{\sigma}$ , 50%  $\longrightarrow S_0(n_{\sigma}) = n_{\sigma}\sqrt{N_{RoI}} + N_{RoI} - B_0$ 





#### **Tsinghua University**

16

自强不息 厚德载物



## <sup>150</sup>Nd与<sup>130</sup>Te半衰期灵敏度对比

自强不息 厚德载物

#### **Preliminary result**



500吨探测器运行1年,掺杂10%天然Nd/Te

**Tsinghua University** 



Te

## <sup>150</sup>Nd与<sup>130</sup>Te的中微子有效质量

KamLAND-Zen发表的有效质量结果 doi: 10.1103/PhysRevLett.130.051801



\*计算< $m_{\beta\beta}$ >所用 $G_{0\nu}$ 与 $M_{0\nu}(QRPA)$ 取自doi: 10.1142/S0217732313500211



## 拟合范围与**x2**惩罚项的影响

自强不息

厚德载物

#### **Preliminary result**

Nature Nd,  $\Sigma = 2.85 \text{ ton} \cdot \text{yr}$ ,  $\delta = 3\%$ 









- 锦屏500吨探测器0νββ研究本底
- 分析方法及对比结果









结论

- •初步结果显示,相同实验条件下,<mark>拟合法</mark>给出的0vββ灵敏度更优
- 这一结果可能由拟合法使用了Rol范围外的额外信息导致
- 作为粗糙的估计, 锦屏500吨探测器在 $\delta$  = 3%的条件下掺杂10%天然Nd, 运行5年: 对<sup>150</sup>Nd的0v $\beta$ 半衰期灵敏度可达到2.24 × 10<sup>26</sup> yr, 对应<  $m_{\beta\beta}$  >为16~35 meV\*
- •初步结果显示,同样掺杂10%质量的天然Nd与天然Te,<sup>130</sup>Te的0vββ半衰期灵敏度 较<sup>150</sup>Nd更高,但换算至**有效中微子质量**后二者给出**同量级**的<*m*<sub>ββ</sub>>

\*G<sup>0v</sup>与M<sup>0v</sup>取自 DOI: 10.1142/S0217732313500211



# 感谢聆听!





Tsinghua University



# BackUp







## 无中微子双贝塔衰变半衰期下限确定

• **0v**ββ反应:

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$ 

- 观测到0vββ反应可以验证中微子的 Majorana性质,轻子数不守恒,并为确定 中微子质量排序提供重要依据
- $0\nu\beta\beta$ 反应的半衰期 $T_{1/2}^{0\nu}$ 满足:  $\left(\frac{1}{T_{1/2}^{0\nu}}\right) = G^{0\nu}g_A^4 |M_{0\nu}|^2 \left|\frac{\langle m_{\beta\beta} \rangle}{m_e}\right|^2$
- 其中G<sup>0v</sup>为相空间因子, |M<sub>0v</sub>|为核矩阵元

< m<sub>ββ</sub> >为有效中微子质量

自强不息 厚德载物



Tsinghua University



# Ονββ实验现状

| 实验名称        | 使用<br>核素                                                                                           | $G^{0 u} [10^{-15} yr]$                   | Q值<br>[keV]                          | 天然丰度<br><b>[%]</b>                | T <sup>0ν</sup> <sub>1/2</sub> 90%C.L.<br>[yr]                                                                                 | $ m_{ee} $<br>[ $meV$ ]                                      | 使用方法  |
|-------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|
| NEMO-3      | <sup>100</sup> Mo<br><sup>82</sup> Se<br><sup>150</sup> Nd<br><sup>48</sup> Ca<br><sup>96</sup> Zr | 15.92<br>10.16<br>63.03<br>24.81<br>20.58 | 3034<br>2995<br>3371<br>4272<br>3350 | 9.6<br>9.2<br>5.7<br>0.187<br>2.8 | > $1.1 \times 10^{24}$<br>> $3.6 \times 10^{23}$<br>> $2.0 \times 10^{22}$<br>> $1.3 \times 10^{22}$<br>> $9.2 \times 10^{21}$ | 310-776<br>815-1994<br>2423-5243<br>7478-20852<br>4094-14829 | 径迹重建法 |
| CUORE       | <sup>130</sup> Te                                                                                  | 14.22                                     | 2527                                 | 34.5                              | $> 3.2 \times 10^{25}$                                                                                                         | 75-350                                                       | 计数法   |
| GERDA       | <sup>76</sup> Ge                                                                                   | 2.36                                      | 2039                                 | 7.8                               | $> 1.8 \times 10^{26}$                                                                                                         | 79-180                                                       | 计数法   |
| KamLAND-Zen | <sup>136</sup> Xe                                                                                  | 14.58                                     | 2458                                 | 8.9                               | $> 2.3 \times 10^{26}$                                                                                                         | 36-156                                                       | 拟合法   |
| CUPID-0     | <sup>82</sup> Se                                                                                   | 10.16                                     | 2995                                 | 9.2                               | $> 4.6 \times 10^{24}$                                                                                                         | 263-545                                                      | 计数法   |
| CUPID-Mo    | <sup>100</sup> Mo                                                                                  | 15.92                                     | 3034                                 | 9.6                               | $> 1.5 \times 10^{24}$                                                                                                         | 310-540                                                      | 计数法   |
|             |                                                                                                    |                                           |                                      |                                   |                                                                                                                                |                                                              |       |

- 目前0vββ实验中使用的方法有径迹重建, 计数法和拟合法
- 液体闪烁体探测器中普遍使用的方法有计数法和拟合法



# 两种方法采用的确定灵敏度的统计方法

• 统计检验量 $q_0$ :  $q_0 = -2 \log \left( \frac{L(\boldsymbol{x}|S = 0, \widehat{\boldsymbol{B}})}{L(\boldsymbol{x}|\widehat{S}, \widehat{\boldsymbol{B}})} \right)$ 

- 第一类错误 $\alpha = \int_{t_{\alpha}}^{+\infty} P(q_0|H_0) dq_0$
- 第二类错误 $\beta = \int_0^{t_\alpha} P(q_0|H_1) dq_0$

Prob. P(q0|H1)  $t_{\alpha}$ - P(q0|H0) 🗕 ta 10 5 15 20 2530  $q_0$  $P_{50}^{3\sigma}$  criteria

- 根据选取的 $\alpha$ 确定 $t_{\alpha}$  (如 $\alpha = 0.0135$ ) +
- 找到合适备择假设 $H_1$ 使得 $\beta = 0.5$

自强不息 厚德载物



## 灵敏度的另一种定义

- 0vββ半衰期灵敏度也可以指多次MC实验中, 其半衰期90% C.L.下限的中位数
- 获取0vββ半衰期的置信区间可使用Neyman-Constructed Confidence Interval,由于 0vββ事例数存在物理边界 ( $S \ge 0$ ),故置信区间的获取需要使用Feldman-Cousins 方法 \*
- 多次生成MC实验时,必须给定0vββ半衰期(即信号数期望S)的真值,例如设定 S=0 (nEXO)或设定RoI内的S=B (SNO+)

\*Phys. Rev. D 57 3873(1998)





## Ονββ核素俘获太阳中微子产生的本底能谱

- 对每个核素(A,Z),其俘获能谱为对应(A,Z+1) 核素的所有 $\beta$ 衰变分支的 $\beta$ + $\gamma$ 谱,每个分支的 能谱都使用 $\beta$ 衰变的公式计算:  $\frac{dN}{dE} \sim (E_0 - E_e)^2 E_e p_e F(Z, E_e)$
- $E_0$ 为 $\beta$ 衰变Q值, $E_e$ 为电子动能, $p_e$ 为电子动 量, $F(Z, E_e)$ 是费米函数







29Tsinghua University

## 能谱拟合法似然函数

能谱拟合法使用的似然函数为:

$$-2\log(L) = \chi 2 = \chi_{signal} + \chi_{penalty}$$

$$\chi_{signal} = 2 \sum_{i}^{N_{bin}} \begin{cases} \nu_i - n_i & \text{for } n_i = 0\\ \left(n_i \log\left(\frac{n_i}{\nu_i}\right) \nu_i - n_i\right) & \text{for } n_i > 0 \end{cases}$$
$$\chi_{penalty} = \sum_{k}^{N_{bkg}} \left(\frac{\nu_k^{bkg} - N_k^{bkg}}{\sigma_k}\right)^2$$





## 能谱拟合法细节

参考KamLAND-Zen的做法,将总的能谱按照空间坐标分为等体积的10个同心球(球壳)

拟合时选取FV为r<4.0 m, 即只选取半径较小的5个同心球(球壳)的能谱进行拟合

### MC事例的空间坐标来自其沉积能量的加权平均中心

