

六氟化硒高压气体TPC无中微子双贝塔衰变 中的太阳中微子本底

华中师范大学

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 2024年5月8-12日,西昌

NvDEx实验

- 主要优势
 - ⁸²Se的高Q_{ββ}值 (2.998 MeV)
 - Topmetal-S高能量分辨率
 - TPC径迹重建,离子漂移低扩散
 - 锦屏地下实验室
- •本底
 - •环境、材料中自然放射性本底
 - 宇宙线相关本底
 - 2νββ本底
 - 中微子本底

Phys. Rev. Lett. 130 (2023)

太阳中微子本底

- 随着其他本底的减少变得重要
- •对⁸²Se核素影响更大
 - 低*Q*_v

TABLE 2. $\beta\beta$, CC, and SB Q values in units of MeV and solar- ν capture rates in units of SNU for selected $\beta\beta$ nuclei including the effect of oscillations. Column 3 gives S_t for no oscillations., S_B is the ⁸B- ν capture rate, and S_t is the total solar- ν capture rate. The background rates for β decay (B_{SB}) and $\beta\beta(2\nu)$ ($B_{2\nu}$) are calculated for $\delta = 0.02$.

Isotope	S _{pp} (SNU)	$\frac{S_B}{(SNU)}$	S_t no osc. (SNU)	$\frac{S_t}{(\text{SNU})}$	B_{SB} events/ t y	$B_{2\nu}$ events /t y
⁷⁶ Ge	0	5.0	15.7	6.3	0.03	0.005
⁸² Se	257	10.0	672	368	4.42	0.15
¹⁰⁰ Mo	391	6.0	975	539	0.11	1.56
¹³⁰ Te	0	6.1	67.7	33.7	0.48	0.01
¹³⁶ Xe	0	9.8	136	68.8	0.55	0.003
¹⁵⁰ Nd	352	15.5	961	524	0.12	1.00

AIP Conf. Proc. 1894, 020008 (2017)

- •标准太阳模型
 - B16-AGSS09
- 中微子振荡
- 物质效应

中微子相关物理过程

• 中微子-电子散射

事例率 [events/(ton · yr)]

无振荡	有振荡	ROI			
738.6	487.5	0.00445			

2024-5-10

带电流反应截面和事例率

$$\begin{aligned} \sigma_k &= \frac{G_F^2 \cos^2 \theta_c}{\pi} p_e E_e F(Z, E_e) \left[B(F)_k + \left(\frac{g_A}{g_V}\right)^2 B(GT)_k \right] & \frac{\delta g}{R} & \frac{1}{2} \frac{\delta g}{R} & \frac{$$

•正电子能量

事例率 [events/(ton · yr)]

Geant4模拟

- 事例产生
 - •信号: BxDecay0
 - •本底: particle gun
- 探测器模拟
 - 10 bar气压
 - 记录在路径上损失的能量E
 - 六边形像素阵列读出
 - 像素距离8 mm
 - *N*_e = *E* / *W* ⊕ 0.34% FWHM涨落
 - xy平面的位置信息: 1 mm扩散

- 每个像素提取"raw block"
- 将"raw block"分割成小的"block"
 - 对"block"的能量加入40 e-电子学噪声(→信号能量分辨率1% FWHM)
- 将临近的"block"组成"cluster"

Cluster

- ⁸²Br基态的 β^{-} 衰变、¹⁹Ne的 β^{+} 衰变
 - 大量cluster
 - 分布范围大

Cluster能量

- 明显的不同能量的γ的特征峰
- $N_{\rm clus} < 5, E_0 > 2.2 \,\,{\rm MeV}$
 - Br CC本底: 0.64→ <0.0001 events/(ton·yr)

• 事例中所有cluster总能量减掉其 中某个cluster的能量 Fraction / 0.005 MeV

• 当被去掉的cluster是 β 衰变中产 生的e[±]时, E_{N-1} 是末态核素激发 态的能量

- •⁸²Br的β衰变
 - 只考虑能量时是主要本底
 - •可以通过 E_0 、 N_{clus} 减少
- 单电子本底需要其他方法来减少
 - 与自然放射性γ本底相似

 $N_{clus} < 5$ $E_0 > 2.2$ MeV

Source	All energy	With oscillation	ROI	Selection
Electron scattering	728.6	481.0	0.00445	$0.00395(13)^*$
82 Se CC	63.95	33.88	0.00021	$0.000185(4)^*$
82 Br β decay	62.41	33.07	0.63	< 0.0001 (95% C.L.)
$^{82m}\mathrm{Br}\ \beta\ \mathrm{decay}$	1.54	0.81	0.00052	$0.00037(2)^*$
$^{19}\mathrm{F}\ \mathrm{CC}$	5 11	1.60	0.0036	$0.00318(7)^*$
¹⁹ Ne β decay	0.11	1.09	0.0042	0.000003(3)
Proton emission	0.292	0.093	0	0
Total single-electron events			0.00878	0.00769(15)
Total multi-site events			0.63	< 0.0001 (95% C.L.)

•一个大型的多用途的SeF₆探测器?

• 中微子物理、暗物质.....

AAAS Research Volume 2022, Article ID 9798721, 9 pages https://doi.org/10.34133/2022/9798721 Research

Research Article

Determination of Double Beta Decay Half-Life of ¹³⁶Xe with the PandaX-4T Natural Xenon Detector

PHYSICAL REVIEW LETTERS 130, 021802 (2023)

Search for Solar ⁸B Neutrinos in the PandaX-4T Experiment Using Neutrino-Nucleus Coherent Scattering

3T × **1V** > hep-ex > arXiv:2401.07045

High Energy Physics - Experiment

[Submitted on 13 Jan 2024]

2024-5-10

A Measurement of Solar pp Neutrino Flux using PandaX-4T Electron Recoil Data

OPEN ACCESS

IOP Publishing

J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 (115pp)

Journal of Physics G: Nuclear and Particle Physics

https://doi.org/10.1088/1361-6471/ac841a

Topical Review

A next-generation liquid xenon observatory for dark matter and neutrino physics

- •太阳中微子与82Se发生带电流过程,在0vββ的ROI区域事例率较高
 - 在将来可能成为重要本底
- •太阳中微子在82SeF6中产生的本底可分为两类
 - 单电子(+低能光子)→与自然放射性γ本底类似
 - 电子+多个高能光子→通过一些基于cluster数目、能量的简单筛选将本底有效减少
- 太阳中微子本底事件的一些特征可用于本底鉴别
- •将进一步研究⁸²SeF₆高压气体探测器对太阳中微子研究、暗物质寻找的灵 敏度

- •能量不完全收集
- •边缘影响信号效率

太阳中微子通量不确定度

- •⁸²Se CC相关本底主要受pp、⁷Be中微子影响,~3%
- 19F CC相关本底受8B中微子影响, (10-20)%

• 对电子散射本底也适用

其他同位素

- ¹⁹F丰度几乎100%
- Se有多种同位素
 - 阈值高
 - *O*₀₀低 或β⁺衰变

	• <i>Q</i> _{ββ} 低,	或β+衰	麦变			Δ <i>M</i> [MeV]	25 20	8		 	Se-74: Se-76: Se-77: Se-78:	0.86% 9.23% 7.6% 23.69%		
Isotope	Abundance(%)	$Q_{\beta}/{ m MeV}$	$Q_{etaeta}/{ m MeV}$	Br lifetime	Br decay		10	2			Se-80:	49.8%	/	
⁷⁴ Se	0.86	6.925	1.209	25.4 min	eta^+	-	10			$\overline{}$	Se-82:	8.82%		
⁷⁶ Se	9.23	4.963	_	16.2 h	eta^+			8	18	R		P		
⁷⁷ Se	7.6	1.365	_	57 h	eta^+		5	a	10	-2		10		
⁷⁸ Se	23.7	3.574	_	6.45 min	eta^-,eta^+		0							~
⁸⁰ Se	49.8	1.870	0.134	17 min	eta^-,eta^+		0		6		Ū			
⁸² Se	8.82	0.095	2.998	35 h	eta^-		-5							
						-		31	32	33	34	35	36	37 Z

2024-5-10

• 方向性

$$\cos^2 \theta = \frac{T(m_{\rm e} + E_{\nu})^2}{(T + 2m_{\rm e})E_{\nu}^2}$$

