

清著大学工程物理系

Department of Engineering Physics, Tsinghua University

大湾区国创中心粒子应用技术创新中心

低本底高纯锗探测器研制进展

付逸冬 2024年5月10日 COUSP2024, 西昌

京津冀国家技术创新中心

长三角国家技术创新中心

粤港澳大湾区国家技术创新中心

科技部统筹谋划,在全国布局3家综合类国家技术创新中心,若干 家领域类国家技术创新中心,形成整体性的战略科技力量布局。

领域类 (16家) 国家高速列车技术创新中心 国家新能源汽车技术创新中心 国家合成生物技术创新中心 国家新型显示技术创新中心 国家生物药技术创新中心 国家生猪技术创新中心 国家耐盐碱水稻技术创新中心 国家玉米种业技术创新中心 国家燃料电池技术创新中心 国家第三代半导体技术创新中心

粒子应用技术创新中心(以下简称"粒子创新中心")作为大湾区国创中心直属创新平台之一,源于清华大学工程物理系的优势学科基础与创新技术积累,坚持"四个面向",以发展高端粒子应用医疗装备、科学仪器、安全与工业装备作为主要方向。

主要研究方向包括:先进SPECT技术与系统,高纯锗探测器系列,超高分辨电镜,准单能X光源等。

高纯锗技术介绍

专业发展现状:

- 国创中心高纯锗项目团队由清华工物系李玉兰教授领衔
- 在应用的推动下,随着晶体生长技术、电极制备技术、低 噪声前端读出电子技术的发展,先后推出P型同轴、N型 同轴、阱型、宽能、低阈值、小平面等多种类型的探测器。
- 近十年来,随着暗物质探测、无中微子双贝塔衰变等特殊 需求,进一步陆续发展出点电极、方向同轴等探测器。 (清华主导,掌握核心)
- 伽马谱学, 紧凑型
- 工作环境:真空、液氮、液氩

高纯锗技术介绍

> 高纯锗探测器

- 技术成熟,已成功制造100余台套探测器
- 技术指标达到或优于国际水平
 - 40%效率同轴探测器: 0.90keV@122keV, 1.88keV@1332keV
- NEW! 新推出宽能型探测器
 - 采用自主知识产权薄窗电极, 能量范围覆盖3keV~10MeV
 - 性能指标优异, 达到或优于国际水平
- 探测器稳定性、一致性好

• 0.39 keV (对 5.9 keV 能峰);

• 0.56 keV (对 121.8 keV 能峰);

• 1.6 keV (对 1332.5 keV 能峰)。

- > 制冷方式
 - 液氮回凝制冷(直插式/一体式)
 - 纯电制冷

> 应用目标

- 作为源自清华工物系的技术,高纯锗团队与CJPL、CDEX组保持良好合作
- 承担CJPL-II 5台低本底高纯锗探测器的研制, 拟用于地下放射性测量分析系统

完全对标进口探测器:

- 60cm长U型冷指;
- 相对探测效率≥100%;
- 能量分辨率 ≤ 2.2keV@1332keV, ≤1.4keV@122keV;
- 低温保持器材料U/Th含量<0.1ppb;
- MDA达到mBq/kg量级

高纯锗探测器物理设计

> 对探测器的指标要求:

- 60cm长U型冷指;
- 相对探测效率≥100%;
- 能量分辨率≤2.2keV@1332keV, ≤1.4keV@122keV;
- > 设计情况:
 - · P型同轴探测器
 - ・ 采用Φ85x65mm晶体
 - ・ 探测器灵敏体积~1.9kg
 - ・蒙卡相对效率~105%
 - ・工作电压~3000V

Electric Field (Magn.) @ $\phi = 0.0^{\circ}$

探测器整机设计

> 设计情况:

- ・ 60cm U型冷指探测器
- · 分区进行低本底优化:
 - · 探测器模组 (近端) 重点优化,所有手段降本底
 - ・ 冷指 (近端 远端) 平衡降本底与其他设计考量
 - ・ 液氮杜瓦 (远端) 采用商用杜瓦
- ・ 近端的设计优化
 - 优化材料选择,金属材料只使用低本底Cu & Pb, 有机材料通过CJPL-I GeTHU筛选本底合格的材料
 - · 电子学采用低本底线缆
 - · 信号引出由传统电极针方案改为邦定读出
 - JFET放在尽可能远离晶体的位置,并进行屏蔽

探测器整机蒙卡模拟

> 使用Geant4建模,蒙卡模拟得到:

- 积分计数率1024.9cpd@30~2700keV
- 以Φ85x65mm铜样品(1.8kg)为例
 计算,测量30天,最小可探测活度达
 到mBq/kg量级

长十 承引	蒙卡使用材料放射性活度(mBq/kg)				
17/14	232Th	238U	40K		
铜	0.4	1.24	0.003		
PTFE	<2.24	<8.65	<54.23		
PEEK	<5.33	<5.22	<80.45		
蓝宝石	<1.13	<4.76	<36.46		

核素	舵里 (keV)	本底计敛率 (cpd)	MDA (mBq/kg)
²³² Th	583	9.42	3.51
²³² Th	2614	2.63	3.04
²³⁸ U	351	27.32	4.94
²³⁸ U	609	20.31	4.17
⁴⁰ K	1460	3.38	9.25

> 设计阶段的考虑:

- 优化材料选择,金属材料只使用低本底Cu & Pb, 比如In改用Pb
- 有机材料通过CJPL-I GeTHU筛选本底合格的材料

> 研发过程中的情况及应对措施:

- ・ 获取不到低本底老Pb:电子学屏蔽体改用Cu, In 改用Sn (晶体固定方式改变)
- ・ 获取不到德国低本底Cu:多方寻找资源,改用国产 低本底Cu
- ・ 商用分子筛Ra超标风险高:多方寻找资源,改用低 本底活性炭 (考虑过采用离子泵方案)
- · 电极读出使用的弹簧针本底未知: 改用邦定引出
- ・ 邦定丝与电路板焊接引入本底未知: 改用压接方案

* + * 1	放射性	判断		
们科	232Th	238U	40K	结果
铜	<0.4	<1.24	<0.003	采用
PTFE	<2.24	<8.65	<54.23	采用
PEEK	<5.33	<5.22	<80.45	采用
蓝宝石	<1.13	<4.76	<36.46	采用
锡	<1.80	<7.29	<64.92	采用
铅	22.02	103.89	112.7	不采用
	<10.7	4736	220	不采用
磷铜弹簧	<11.5	717	255	不采用
	75.9	1050	3628	不采用

- 采用工艺: 化学刻蚀+电抛光
- 化学刻蚀工艺:
 - $1\%H_2SO_4 + 3\%H_2O_2$ (5min)
 - 1%草酸 (5min)
 - 去离子水清洗
- 电抛光工艺:
 - 电解液: 85%H₃PO₄+5%正丁醛
 - 氮气氛围风干

电抛光后

- 化学刻蚀:工艺条件简单, 但表面粗糙度较大,本底抑制效果较差
- 电抛光:工艺条件复杂,需制备合适电极,表面粗糙度较好,本底抑制效果好
- 降低高纯铜材料表面的本底同时保证真空/导冷性能

大工件的处理效果(长度约730mm)

≻ 焊接:

- 探测器设计需求: 60cm长U型冷指, 该冷指需要焊接 (共有3条焊缝)
- 采用电子束焊接工艺,不加料,保证 铜材料的低本底特性
- 考虑到大工件表面处理困难,先进行 表面处理后再行焊接

邦定工艺电极引出

- 电极引出所需物料极大减少:
 传统弹簧电极针4g,邦定铝丝0.0002g
 (直径0.05mm);
- 相较于传统弹簧针采用合金,邦定所 使用的高纯铝丝本底更低。

材料	放射性	判断		
	232Th	238U	40K	结果
磷铜弹簧	<10.7	4736	220	不采用
	<11.5	717	255	不采用
	75.9	1050	3628	不采用

性能指标	技术要求	测试情况	结论
冷指	60cm长U型	60cm长U型	合格
相对探测效率	≥100%	106.0%	合格
能量分辨力	≤2.2keV@1332keV	1.85keV@1332keV	合格
	≤1.4keV@122keV	0.91keV@122keV	合格
低温保持器材料	U/Th含量<0.1ppb	U/Th含量<0.1ppb	合格
MDA	mBq/kg量级	?	?

探测器性能指标

- ・ 地点:CJPL-I
- 时间: 2024年1月
- 屏蔽体: 15cm Pb
- 采谱时间: 2天 (172800s)
- 本底计数: 14203 (30keV-3MeV)
- 本底计数率: 0.082 cps 7101 cpd 0.043 cps/kg 3740 cpd/kg

CJPL-I实测本底谱(2天)

- ・以1.8kg铜样品,测量时间30天为例, 简单估算MDA
- ・ 每个峰取3倍半高宽区域为ROI,在ROI 前后各取1.5倍半高宽区域扣康普顿平台, 以上合称总ROI(6倍半高宽)
- ・ 使用近似的MDA公式:

 $L_C = 2.33\sqrt{B}$ $L_D = 2.71 + 4.65\sqrt{B}$

- ・ 其中B为30天的本底计数
- ・ 求得L_D后,除以探测效率(蒙卡得到), 即可得到MDA

样品特性	数据
样品材料	铜
密度	8.92 g/cm3
形状	圆柱体
尺寸	Ф85mm × 50mm
质量	2.5kg
放置位置	探测器端盖
测量时间	30天

MDA试算

放射 系	核素	能量 (keV)	分支 比 (%)	总ROI 计数率 (cpd)	探测效率 (cpd/ mBq/kg)	MDA (mBq/k g)
	Pb-212	238	43.6	73	1.11	6.59
	TI-208	583	30.54	35	0.69	7.43
Th-232	TI-208	2614	35.84	34.5	0.48	10.60
	Ac-228	911	26.2	26.5	0.53	8.43
	Ac-228	968	15.9	19	0.31	12.04
U-238	Pb-214	351	35.6	84.5	0.90	8.75
	Bi-214	609	45.49	39.5	1.02	5.31
K-40	K-40	1460	10.55	40.5	0.19	29.64

- 探测器的本底计数率是蒙卡结果的7 倍, 高能部分超出更多 (13倍@2614 vs 4倍@583)

- 探测器的本底计数率是Ge-THU I的 9倍 (按Ge质量归一化)
- 测试使用的屏蔽体是15cm的铅,其 本底较高;待CJPL-II规划的屏蔽体 10cm高纯铜+20cm低本底铅到位后 ,本底会有进一步下降
- 探测器在锦屏进行过一次修复,影 响了邦定结构,可能带来一定本底

➤ 在CJPL-I的屏蔽体中,探测器对U、Th的MDA达到mBq/kg量级

- > 成功制备了第一台低本底高纯锗探测器,相对效率达106%,能量分辨力优于商用 探测器水平;
- > 在CJPL-I实测本底计数率为7101cpd,对U、Th的MDA达到mBq/kg量级;
- > 筛选了一系列低本底材料,建立了低本底高纯锗探测器的制备流程;
- > 使用化学刻蚀+电抛光进行表面处理,控制表面放射性本底;
- > 使用电子束焊接工艺,降低焊接引入的本底;
- > 使用邦定信号读出, 替代传统弹簧针方案, 降低信号读出引入的本底;
- > 今年内完成全部5台低本底高纯锗探测器的交付;
- > 预期使用CJPL-II的低本底屏蔽体,进一步降低探测器的本底计数率和MDA水平

谢谢!

核素系	核素	能量	分支比	ROI cpd	净计数率
	Pb-212	238.63	43.6	74	<l<sub>C</l<sub>
	Bi-212	727.33	6.65	28.5	<l<sub>C</l<sub>
Th 000	TI-208	583.18	30.54	35	<l<sub>C</l<sub>
<u> -232</u>	TI-208	2614.5	35.84	34.5	34.5 ± 4
	Ac-228	911.20	26.2	26.5	<l<sub>C</l<sub>
	Ac-228	968.96	15.9	19	<l<sub>C</l<sub>
	Pb-214	351.93	35.6	84.5	10.5 ± 7
	Bi-214	609.31	45.49	39.5	12.5±4
<mark>U-238</mark>	Bi-214	1120.29	14.91	33.5	8±3
	Bi-214	1764.49	15.31	30.5	20.5 ± 4
	Bi-214	2204.06	4.92	12.5	5.5±2
<mark>K-40</mark>	K-40	1460.82	10.55	40.5	23.5±5

CJPL-I实测本底谱的特征峰计数率

(总ROI区间计数率 & 净峰计数率)

核素	能量 (keV)	蒙卡 (cpd)	实测 (cpd)	超出倍 数
²³⁸ U	351	27.32	84.5	3.1
²³² Th	583	9.42	35	3.7
²³⁸ U	609	20.31	39.5	1.9
⁴⁰ K	1460	3.38	40.5	12.0
²³² Th	2614	2.63	34.5	13.1
30-27	00keV	1024.9	7101	6.9

实测本底计数率与蒙卡结果的比较