

Jiangmen Underground Neutrino Observatory

Status and Prospects

Xiaonan Li IHEP, CAS, Beijing

- Facility and Detector
- Installation status
- Performance and Physics Prospects
- Summary

The Location of JUNO Facility

- Project firstly approved in China in 2013 and later in other countries. Construction started in January of 2015
- Collaboration established in 2014, now >700 collaborators from 74 institutions in 17 countries/regions

Facility and Detector

JUNO Site Facility

Underground Facility Layout

Underground Facility

Bird-eye view of Facility

Underground Civil Construction

- Dig down is generally difficult, especially in the presence of water and faults
 - Largest water flow rate seen ~ 600m³/h
- More water than expected:
 - Geological survey shows that the rock resistivity is low
 - Bore holes found no water, but iron ore with a low grade
 - Water are mostly from cracks and faults, not directly from the surface

Mitigations:

- Water drainage tunnel over and around exp. Hall
- Drill holes to inject cement to seal water, and then drill holes for blasting
- Elevate the hall by 35 m, shift the hall location to avoid cracks
- Add a tunnel at the top of the hall to release the water pressure
- **Delayed by** ~ 4 years

Underground Transportation

- Rock temperature ~ 31 °C, Exp. hall reduced and controlled to ~21°C
- ◆ VAC provided fresh air of 40 kM³/hour for underground cavern.

■ Water pool HDPE(High Density PE) liner, thickness of 5mm

- Stability monitoring of cavern structure
 - Number of cavern stability monitoring sensors: 156
 - Underground water level

	Displacement	Rebar strain	Cable strain	Water pressure
Experimental hall	12	23	4	3
Water pool	21	58	8	19
Installation hall	3	3		
-360.43		-359.10	000000000000000000000000000000000000000	-360.97

Underground water level (in a year)

Design of JUNO Detector

- Target mass of 20 kt liquid scintillator → × 20 KamLAND, × 40 Borexino
- Energy resolution < 3%@ 1MeV → 1200 PE/MeV
- Life time: >30 years

	KamLAND	JUNO	PE Ratio
Photon Statistics	250 p.e./MeV	1200 p.e./MeV	5
PMT coverage	34%	75%	2.2
LS transparency	~12 m	> 20 m	~0.9
Light yield(anthracene)	30%	45%	~1.5
Detection Eff.(QE×CE)	~15%	30%	~ 2

• Technology R&D since 2009:

- Transparent & high light yield liquid scintillator
- High detection efficiency 20" PMTs
- Radiopurity U/Th/K < 10^{-17} g/g for 20 kt LS

Detector Design:

- Central target container: acrylic or balloon ?
- Mechanical structure: steel frame or steel tank ?
- Buffer layer: Water or Mineral oil ?

Steel frame+ Acrylic tank

Steel tank+ Acrylic tank

Steel Tank + Balloon

Steel Tank + Acrylic blocks

JUNO Detector Key Parameters

Calibration

Central detector

- Steel structure (SSS)
- Acrylic sphere(AS) +20kt Liquid scintillator
- ~17612 20" PMT
- ~25600 3" PMT

Ccentral Detector

- Acrylic sphere was chosen over balloon for safety, lower backgrounds and longevity
- Structure: SS frame with supporting bars to hold the acrylic sphere and to mount PMTs
 - 263 Acrylic panels: ~8m \times 3m \times 12 cm
 - Thermally pressed and machined to the spherical shape
 - Panels are bonded through PMMA polymerization
 - 1.7m long steel anchor bolts welded to the concrete steel structure to hold the SS frame against the buoyancy
- Main issues:
 - Mechanical precision for PMT clearance ~3 mm
 - No welding, clearance between screw and hole < 1mm
 - Thermal expansion controlled at 21°C \pm 1°C
 - Earth quake safety with liquid-solid coupling, level 7
 - Acrylic quality and strength:
 - Effects of aging, creep, crazing, etc. < 20% loss of strength
 - Bonding: fast and good quality, effects < 20% loss of strength</p>
 - Stress of the supporting rod < 3.5 MPa

- SS structure completed except bottom 4 layers
- Acrylic panel production completed
 - A special production line for low backgrounds (< 1 ppt U/Th/K)
 - Shaping, sanding/polishing, cleaning, machining and protection of
 - panels by 50μm PE, while maintaining high transparency (>96%)
 - and low surface background (< 5 ppt U/Th)
- Acrylic sphere construction on-going
 - Lifting platform: frequently change the diameter and height
 - Acrylic sphere built from the top, 16/23 layers finished, defects repaired
 - SS bars connecting the acrylic and SS, sensors for stress monitoring

Hydraulic Lifting platform

Annealing

Sanding and polishing

Bars between SS and acrylic

VETO: Water Pool and Top Tracker

Design:

 \Rightarrow 700m overburden \Rightarrow R_{μ} =0.004 Hz/m², $< E_{\mu}$ >= 207 GeV

- ⇒ 35 kt water to shield backgrounds from the rock
- 2400 20" PMTs in water to tag & reconstruct cosmic muons
- → Top tracker: refurbished OPERA scintillators
- Water pool lining: 5mm HDPE to keep the clean water and to stop Rn from the rock
- Earth magnetic field compensation coil

100t/h pure water production for U/Th/K<10⁻¹⁴ g/g and Rn<10 mBq/m³, attenuation length>40m, temperature controlled to (21 \pm 1) °C

Large PMT

• uses large 20-inch PMTs as its main light-detection device:

- MCP-PMT(NNVT): 15000
- Dynode PMT(Hamamatsu): 5000

clearance of 3 mm Coverage: 75%

Microchannel plate (MCP)-PMTs

Higher collection efficiency High efficiency photocathode, low backgrounds glass, ...

High production yield, automatic mass production

New type of SBA

- Mass production and waterproofing of 26,000 3-inch PMTs (XP72B22) from HZC Photonics
- Goal: 3% more light, higher dynamic range for muons, uniformity and linearity calibration for large PMTs, ...
- Two eye system look at same event with different systematics
 - Aid to position reconstruction and muon track reconstruction
 - Aid to supernova neutrino measuremente

First commissioning data: SPE spectra of a group of 16 PMTs

- LPMT and sPMT frontend electronics are housed in SS underwater boxes
 - Power the PMTs, decouple signal from HV, process the analog signals and send the information to surface via digital CAT5 cables
- Cables are in the SS corrugated pipes

胡俊: Design and production of readout electronics for the 20-inch PMT

Power Modules, BEC and others

- Have an comprehensive calibration program:
 - 1D: Automated Calibration Unit (ACU) deploys radioactive and laser (1ns, keV-TeV range) sources along the central axis
 - 2D: Cable Loop System (CLS) to scan vertical planes
 - 2D: Guide Tube to scan the outer surface of the central detector (where the CLS cannot reach)
 - 3D: Remotely Operated Vehicle (ROV) operating inside the LS to scan the full volume

Calibrate energy scale and nonlinearity to better than 1% using γ peaks and cosmogenic ¹²B beta spectrum

JHEP 2021, 04 (2021)

- Main requirements: high light yield, high transparency and high radiopurity
- Recipe: Based on Daya Bay experience with dedicated optimization for higher light yield.
 - LAB + 2.5g/L PPO + 3 mg/L bis-MSB
- No dope

Recipe optimized with a decommissioned Daya Bay detector whose results were extrapolated to JUNO size using a new optical model

LS Production and Purification

•Four purification plants + LS Mixing + QA/QC + high purity N₂ and water production plant

•to guarantee radio-purity and transparency

俞伯祥: High pure nitrogen plant of JUNO 孙希磊, 江门中微子实验的超纯液闪

•Full chain of equipment were successfully commissioning and ready for final filling

Radiopurity and Cleanness Control

- Radiopurity control of raw material:
 - ✓ Careful material screening
 - ✓ Meticulous Monte Carlo Simulation
 - ✓ Accurate detector production handling
- Radon and cleanness control of hall environment :
 - High efficient VAC and component/personnel access control into exp. hall
 - Radon concentration: ~160 Bq/m³ in the EH, ~140
 Bq/m³ in the LS hall
 - Cleanliness: class 20,000
- 崔晨阳: Study on dust fallout during installation

JHEP	2021,	102	(2021)

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3 B	etter than spec. by 15%

Construction Status

Inside Water Pool

LPMT Installation

The details on the SS

JUNO

Outside Acrylic

谢宇广报告: TAO

张杰: MicroTCA' Application in TAO

JUNO-TAO

- To measure the reactor neutrino spectrum as a reference to JUNO
 - better resolution to reduce fine structure effects and spectrum uncertainties
 - Improve nuclear database, search for sterile neutrinos
- Idea: Gd-loaded LS @-50°C + SiPM
 - 700k neutrinos/year@44m from the core(4.6 GW), with ~10% bkg.
 - Energy resolution: ~1.5%/VE, 4500 p.e./MeV
 - 10 m² SiPM (>94% coverage) w/ PDE > 50%
 - Operating at -50 °C to reduce the SiPM dark rate by 10³ to 100 Hz/mm²
 - 2.8 ton(1t fiducial volume) new type of Gd-LS for -50 °C

• Component production mostly completed

COUSP2024, May 08, 2024, Xichang

Physics and Prospects

Expected Performance

 $\left(\frac{2.614\%}{2.614\%}\right)^2 + 0.64\%^2 +$

 $\frac{\sigma}{E_{v_is}} =$

0.5

0

0

2

4

- \rightarrow Bkg. in LS can reach U/Th/K < 10⁻¹⁵ g/g for MH
- $> 10^{-17}$ g/g is feasible for solar v and $0v\beta\beta$ decays
- From measured PMT, LS and acrylic properties, the energy resolution will be < 3%@1MeV, based on full simulation, calibration and reconstruction

6

- Main changes vs design(JHEP03(2021)004):
- Photon detection eff.: 27%
 30%
- (EPJC 82 (2022) 12, 1168)
- **New PMT optical model: +8%**
- (EPJC 82 329 (2022))
- *New central detector geometry and LS: 3%*
- Total photon statistics: ~1660/MeV

10

E_{vis} [MeV]

8

1.205%)

Mass Ordering Determination

- Determine mass ordering
 - Exploit interference effects in the fine structure of the oscillated spectrum
 - -3σ sensitivity within ~ 6 years
 - Independent of θ_{23} and δ_{CP}
- Atmospheric neutrino is under consideration

- Measure $sin^2 \theta_{12}$, Δm_{21}^2 and Δm_{31}^2 to better than 0.5% in 6 years
 - New era of precision for neutrino mass & mixing models
 - Model independent tests of the three-neutrino oscillation framework (U_{PMNS} unitarity tests)
 - Narrow down parameter space for $0\nu\beta\beta$ searches

Roughly one order of magnitude improvement over existing precision for 3 parameters!

Parameter	$\sin^2 \theta_{12}$	Δm^2_{21}	Δm^2_{31}	$\sin^2 \theta_{13}$
Current Precision*	4.2%	2.4%	1.5%	3.2%
JUNO 6 years	0.5%	0.3%	0.2%	12.1%

- Although the project delayed, overcome a lot of challenges, the installation is under progress
- Commissioning shows that the performance of (part of) components/detector is better than the requirement
- Expect to beginning filling this year
- Mass ordering expected to determine in the decade
- Anticipating more exciting physics results

