Status of CJPL and DURF

Hao Ma

Oct. 30, 2023 Chengdu, China

Contents

- I. Overview of CJPL
- II. Status of CJPL-I
- **III.** Construction status of CJPL-II(DURF)
- **IV. Experiments proposal of CJPL-II**
- V. Summary

I. Overview

Jinping Hydroelectric Power Plants

Yalong river meets Jinping Mountain:

- The largest tributary of Jinsha River
- Jinping river bend: 150km long

Jinping traffic tunnel

- 17.5km long x 2
- **Overburden**: max. 2400m, 73% of length >1500m.
- Finished on Aug. 8, 2008

Tunnel Layout inside Jinping Mountain

China JinPing Underground Laboratory(CJPL)

- THU-EHDC cooperation on a new underground lab started in May 2009
- CJPL-I site selected in Aug. 2009
- Rock sampling and in-situ measurement to study environmental radioactivity
- An ideal site for an underground laboratory

CJPL Features

- Deepest underground lab with 2400m rock overburden
- Opened on Dec. 12, 2010
- Total space: ~4000 m³
- Main Hall: 6.5m(W) × 6.5m(H) × 42m(L)
- Low muon flux and environmental background

7

Rock sample(Marble) measured by Ge detector

(Unit : Bq/kg)	K-40	Ra-226 (609keV)	Th-232 (911keV)
Rock Sample	< 1.1	1.8 ± 0.2	< 0.27
Ground Level(Beijing)	~600	~25	~50

Logistics of CJPL

- Comprehensively supported by Yalong river company
- Convenient & Comfortable for researchers

II. Status of CJPL-I

Layout of CJPL-I

Experiments in CJPL-I

GeTHU-4

CDEX

PandaX(removed)

Jinping neutrino Exp.

Low-background y spectrometers

Physics experiments

- 2 dark matter experiments: CDEX, PandaX (now to CJPL-II)
- 1 neutrino experiment: Jinping Neutrino Exp.

Low background counting facility

4 low-background γ-ray spectrometers: GeTHU1-4

III. Construction status of CJPL-II

<u>Deep Underground and ultra-low Radiation background</u> <u>Facility for frontier physics experiments(DURF) in CJPL-II</u>

- Proposal approved in 2019
- Construction started in Dec. 2020
- Civil engineering to be finished late 2023
- To be completed late 2024
- 4 experiment halls (A-D), total space of >300,000 m³
- To be the deepest and largest underground lab worldwide

Civil engineering of CJPL-II

Cavern extension and reinforcement

• Completed at Jan. 2020

Civil engineering of CJPL-II

- Water-resistant and radon suppression: construction on wall is completed except for B2 hall, and processing on floor is ongoing
- **Steel structure:** Completed for A/B halls, and 70% completion for the rest
- PE shielding room: completed
- Mechanical and electrical installation: 60% completion for hall-A and 15% for 1/2 auxiliary tunnels

Key Project: water-resistant and radon suppression

- □ Monitoring Rn-222 in Hall-C2 in bare caverns
 - Rn-222 concentration in 14~776 Bq/m³ (average 201 Bq/m³)
 - Data fitting demonstrates a Rn-222 variation cycle of 12.7 month

Key Project: water-resistant and radon suppression

- Water-Resistant and Radon Suppression (WRRS) layer
 - A dedicated engineering using multi-layer protection against water and radon

Features of WRRS layer:

- Preventing water and radon permeating from the rock simultaneously
- Covering the full-space of each experiment hall (wall and floor)
- Using low-background materials in WRRS
- 7 layers, 9 processing, dozens of materials

Key Project: water-resistant and radon suppression

Radon suppression power of the WRRS layers < 0.1 mBq/m²/s</p>

• After WRRS, radon exhalation reduced to less than 1% of its initial value

	WRRS layers —	Radon exhalation rate (mBq•m ⁻² •s ⁻¹)				
		Value	Error	Detection limit		
(a) 待测岩壁	(b)裸露岩壁测量	(c) 混凝土面测量	Rock (before WRRS)	6.99	0.331	0.239
	Concrete	3.23	0.171	0.058		
	HDPE	0.09	0.057	0.075		
	Accelerated rubber layer	-	-	0.075		
(d) HDPE 层测量 (e) 速凝橡胶层测量 (f) 聚合物水泥砂浆层测量 (f) 聚合物水泥砂浆层测量 (f) 聚合物水泥砂浆层测量 (g) 聚氨酯胶泥层测量 (h) 聚氨酯面漆层氢测量 (i) 聚氨酯清漆层测量	Concrete-polymer-cement	0.14	0.092	0.087		
	Polyurethane cement	-	-	0.080		
	Polyurethane top-coat	-	-	0.077		
	Polyurethane varnish	-	-	0.072		

Key Project: Large Nitrogen vessel shielding

- Large LN tank completed
- Clean room under construction
- LN volume: Φ13m×H13m, ~1725 m³
- LN filling planned in 2024

Key Project: Large pure water tank shielding

- Located in Hall-B2
- Outer shield (4500 m³ water) and inner shield (1000 m³ water)
- 12 L low-level radon measurement device completed

Key Project: Combined shielding module

- Multi-purpose shielding combined by PE, Copper, and Lead
 - PE room completed
 - Inner copper and lead combined shielding module under production

Copper and lead combined shielding module

Key Project: Ultra-low-background γ spectrometers

- mBq/kg spectrometers (GeTHU)
 - Extension of current GeTHU-1/2/3/4
 - Detection limit: ~ mBq/kg scale
 - Total 15 HPGe γ spectrometers
 - Commercial HPGe detectors

µBq/kg spectrometers (ARGUS)

- Detection limit: ~ µBq/kg
- 5 commercial HPGe detectors
- Low-background shielding

Key Project: Low-background material selection

- Measurement and selection of construction materials
 - Samples are randomly selected at the construction site and measured at GeTHU gamma-spectrometers
 - 2703 samples, 24359 h in total until Sept. 30, 2023
 - Work with manufacturers to get low-background cement

Measured Samples

Key Project: Cavern safety monitoring system

Multi-detectors to monitor the earth/rock movements

Disturbed Stress monitor

displacement sensor Surface deformation monitor rock cracking monitor

Key Project: Cavern safety monitor system

Monitoring rock-burst for construction

- Continuous monitoring with real-time data processing for rock-burst early warning
- Total 27 rock-burst predicted in 120 days, including a B0+7~0+10 level rock-burst at 2021/9/7

- Monitoring construction effects on science experiment
 - Continuous rock movement monitoring during construction
 - Monitor data help adjust and optimize blast design to control blasting vibration velocity within 0.5 cm/s

Key Project: Cavern safety monitor system

User Interface of monitoring system

Ground laboratory in Xichang

Located in between Xichang airport and downtown

Labs for sample treatment

ICP-MS room

Ventilator room

Basement storage room

IV. Experiment proposals of CJPL-II

- CDEX, PandaX
- JUNA
- Jinping Neutrino Program
- CUPID-China, NvDEX
- GeoDEX, IC SER Exp.
- > Process for Approving and Supporting Proposed New Experiments

- Founded in 2009, 11 institutions, more than 100 people now
- Focused on Dark Matter detection and Ge-76 0vββ search using HPGe technology

PandaX

- Started in 2009, consists of dozens of Universities and research Institutions
- Increasing LXe detector mass for DM and neutrino studies

JUNA

- Started in 2013, 7 Universities and research Institutions
- Goals: Nuclear astrophysics study using underground accelerator

Jinping Neutrino Program

CUPID-CJPL: 100 Mo-based bolometric exp. for $0\nu\beta\beta$ search

Crystal testing (2021-2022) 6-12 natural crystals

CUPID-China

- Fudan University*
- Beijing Normal University*
- Shanghai Institute of Applied Physics
- Shanghai Institute of Ceramics
- Shanghai JiaoTong University*
- Tsinghua University
- University of Science and Technology of China*
- Ningbo University

CUPID-CJPL-200/1T (2024+) >1000 enriched crystals

NvDEx for ⁸²Se 0vββ search

- High pressure ⁸²SeF₆ Gas TPC
- Direct read-out by top-metal CMOS sensors
- Prototype detector being built

GeoDEX

Deep underground geologic time variation in-situ detector experiment

IC SER: deep underground Integrated Circuit <u>Soft</u> <u>Error Research</u>

- Radioisotopes in IC could cause soft error (SE) by emitting alpha particles
- Study the SE rate in CJPL to prevent interference from atmospheric neutrons
- Compare test data in CJPL and Lhasa to acquire "Golden data" for IC SE rate

Process for Approving and Supporting Proposed New Experiments

Visit our website for more info:

https://cjpl.tsinghua.edu.cn/

Contact:

cjpl@tsinghua.edu.cn

V. Summary

- CJPL-II will be the deepest (2400m rock) and largest (>300,000 m³ space) underground Lab worldwide
- Most civil engineering of CJPL-II completed, the remaining will be finished in 2023
- CJPL-II plans to start operation at the end of 2024
- The water-resistant and radon suppression in CJPL-II controls radon exhalation rate to less than 0.1 mBq/m²/s
- Construction materials are measured and selected to control their background
- Cavern safety monitoring system ensures the safe and smooth operation of CJPL-II

CJPL welcomes experiment proposals worldwide !

