DUNE The Deep Underground Neutrino Experiment

Xin Qian

Brookhaven National Laboratory

Kam-Biu Luk

Hong Kong University of Science and Technology University of California, Berkeley Lawrence Berkeley National Laboratory On behalf of the DUNE collaboration

Symposium on Frontiers of Underground Physics Chengdu, 30 October 2023

Big Questions in Neutrino Physics

- Do neutrinos have large matter antimatter asymmetry?
- What's the neutrino mass hierarchy?
- Are neutrino Dirac or Majorana particles?
- What is the neutrino mass?
- Are there sterile neutrinos?

Deep Underground Neutrino Experiment

- Neutrino oscillation
 - search for leptonic CP violation
 - determine the mass ordering
 - resolve the octant ambiguity
 - test the unitarity of PMNS matrix with accelerator, atmospheric, and solar neutrinos

- Measurements with supernova neutrinos
- Search for new physics beyond the Standard Model such as
 - proton decay
 - sterile neutrino

DUNE Collaboration

 About 1,500 collaborators from more than 200 institutions in over 30 countries

September 2023 Collaboration Meeting in Colombia

$\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

• Oscillation pattern is very sensitive to the δ_{CP} and mass hierarchy

• Matter effect: coherent forward charged-current (anti)- v_e scattering on atomic electrons

Long Baseline Neutrino Facility (LBNF)

6

- Neutrino beam
 - Proton Improvement Plan-II (PIP-II)
 - 1.2 MW, upgradeable to 2.4 MW, 60-120 GeV protons pitching down at 5.8° before striking a graphite target
 - 0.5-5 GeV (anti)neutrinos
- Near Detector Hall close to the Fermilab site boundary

LBNF @ Sanford Underground Research Facility

- In the Homestake gold mine, Lead, S. Dakota
- LBNF: Four caverns for detectors and 1 utility hall at 4850-ft below ground (1.5 km, 4300 mwe)

Liquid Argon Time Projection Chamber (LArTPC)

SiPM

• Position resolution of ~mm with multiple 1D wire readouts

Drift velocity: 1.6 m/ms \rightarrow several ms drift time

• Particle identification (PID) with energy depositions and topologies

LArTPC: Excellent capability in identifying v_e

- Separation of e/γ
 - Gap Identification
 - -1 MIP vs. 2 MIP dE/dx
- Comparison of P_{MCS} and P_{Range} to separate low-energy e/μ for v_e charge-current interaction

Stopped Muon in MicroBooNE (U-view)

25

20

15

10

9

30

Module 1: 17-kT Horizontal-Drift LArTPC

Module 2: 17-kT Vertical-Drift LArTPC

Charge readout

Light readout

- **320 PCB-based Charge Readout** Unit, each with 1536 channels (3 views with 5-7 mm pitch)
- **672 X-ARAPUCA** Light Readout with 2 channels each (160 SiPMs)

Precision $\nu_{\mu} \rightarrow \nu_{e}$ **Oscillation** Measurement

• Data points show

Normal Mass Ordering (MO), CP phase $\delta_{CP} = 0$, Octant $\sin^2\theta_{23} = 0.5$

• 685 kt-MW-years exposure

DUNE v_e charged-current simulation

DUNE

Neutrino-Argon Interaction Cross Sections

• Charged-current v-Ar interaction, allowing to tag neutrino flavor, is critical to oscillation measurement

DUNE

13

• Lack of a first-principle description of nuclear effects in neutrino-nucleus interaction

Near Detectors (ND)

- Near Detector Liquid Argon TPC (ND-LAr) + Muon Spectrometer (TMS) measure
 - v interactions in 7 \times 5 optically isolated liquid argon TPC modules with pixelated readout
 - TMS measures muons that exit ND-LAr
- System for on-Axis Neutrino Detection (SAND) measures neutrino interactions with various target materials (e.g. Hydrogen) and monitors the neutrino beam stability

DUNE-PRISM

- Build a FD prediction directly from ND data by going off-axis
- Linearly combine many **ND fluxes** to **match the FD oscillated flux**
- Unknown or poorly modelled cross section effects **directly measured**
- Cancellation between ND and FD flux uncertainties

Neutrino Mass Ordering (MO)

- With a 1300-km baseline, the matter effect is very large
- Determination of the MO over **3** σ in 3 years, over 5 σ in 5 years since start of data taking, independent of external inputs (e.g. θ_{13}) and δ_{CP} value

Search for Leptonic CP Violation (CPV)

- Determination of CPV from the value of $sin\delta_{CP}$
- Obtain sensitivity with Asimov data set
- ACE: Accelerator Complex Evolution
 - Deliver higher beam power early
 - Increase Main Injector ramp rate
 - Increase proton intensity and ramp rate of booster
- FD 3/4: Far Detector 3 & 4
- MCND: Improved systematics with Near Detector

Unitarity & Search for Sterile Neutrino

18

Octant Determination

DUNE

• Critical input for v mass & model building $\sin^2 \theta_{23} > 0.5 \rightarrow \nu_{\mu} > \nu_{\tau} \text{ in } \nu_3$ $\sin^2 \theta_{23} = 0.5 \rightarrow \nu_{\mu} = \nu_{\tau} \text{ in } \nu_3$ $\sin^2 \theta_{23} < 0.5 \rightarrow \nu_{\mu} < \nu_{\tau} \text{ in } \nu_3$

• Also, measure with tau neutrinos

Supernova Neutrino

¹Super-Kamiokande, *Astropart. Phys.* **81** 39-48 (2016) ²Lu, Li, and Zhou, *Phys Rev. D* **94** 023006 (2016) • Time (and energy) profile of the v flux shed light on supernova physics

- Flux contains v_e and \overline{v}_e as well as a component of the other flavors (v_x)
 - DUNE has unique sensitivity to v_e component
- O(100)s events per Far Detector module for galactic supernova burst
 - Reach extended outside the Milky Way

Solar Neutrinos

10

- Despite large neutron background below ~10 MeV, DUNE can measure ⁸B solar flux and observe hep flux
 - Precision θ_{12} and Δm^2_{21} measurements with solar neutrinos
- JUNO will have by far the best precision in $\theta^{}_{12}$ and $\Delta m^2^{}_{21}$
- DUNE-JUNO comparison is sensitive to new physics

DUNE Preliminary

⁸Bv_eCC

Searches for Proton Decay & $n - \overline{n}$ Oscillation Different

0.5 bkg events for 400 kt-yr, 30% signal efficiency Sensitivity (no signal): $\tau/B > 1.3 \times 10^{34}$ yr (90% C.L.)

Free-neutron-equivalent sensitivity: $\tau_{\rm free,osc} > 5.5 \times 10^8 \, {\rm s} \, (90\% \, {\rm C.L.})$

Dark matter at DUNE ND & FD

- ND-LAr is sensitive to DM produced in beamline, off-axis data helps to control SM backgrounds
- FD is sensitive to inelastic dark matter of cosmic origin

Far-Site Excavation: ~80%

North Cavern

South Cavern

Central Utility Cavern

DUNE

Beamline and Near Detector site (*a*) **FNAL**

• Conventional facilities for the neutrino beamline and the Near Detector underground site have completed their designs

Decay

Pipe

Absorber

Beamline Complex: Upstream end view of Primary Beamline, Target Hall, Decay Pipe, and Absorber

Prototyping: Horizontal Drift

- LArTPC 3.6 m horizontal drift + photon detection
- Exposed to test beams at CERN, momentum-dependent beam composition contains $e, p, \pi^{\pm}, K^{\pm}, \mu$ in 2018 & cosmic data in 2018 2020
- Under installation for this year's running

Prototyping: Vertical Drift

- Data taking @ CERN expected end 2023
- 8 charge readout units (3.4 m drift distance)
- 8 x-Arapuca photon detectors @ cathode and another 8 x-Arapuca photon detectors @ membrane

Prototyping: Near Detectors

- Four ND-LAr prototype modules operated successfully at Bern with O(100) millions cosmic rays recorded, preparing 2 × 2 configuration for neutrino beam test at FNAL
- SAND: KLOE magnet extraction, LAr target design, staw tube tracker construction underway
- Also, progress in DUNE-PRISM and TMS

Schedule and Staging

- Phase I: FD start @ 2028; ND & Beam start @ 2031
 - Full near + far facility and infrastructure
 - Upgradeable 1.2 MW neutrino beam
 - Two 17-kT LArTPC modules
 - Movable ND-LAr with TMS
 - SAND
- Phase II (in 2030s):
 - Two additional Far Detector modules
 - Beam upgrade to > 2 MW (with ACE)
 - More capable Near Detector

DUNE Phase II Opportunity

 Future far detector modules could extend the physics reach to lower energies and/or lower backgrounds (e.g. Vertical Drift technology with enhanced light collection)

DUNE FD3 Min Field Cage Sys	i-Workshop Toward a (tem	Combined Pho	ton Detection and	
Jun 26 – 28, 2023 Stony Brook University Ph US/Eastern timezone	vsics Building		Enter your search term	۹
Overview	The mini-workshop will discuss ongo resources and interests, and make p	bing and future R&D items fi lans toward a first prototype	or DUNE FD3, identify available e. The event will be hybrid (in per	son +
Contribution List Registration	virtual). In-person attendance and di event.	scussions are encouraged.	There is no registration fee for th	is

• **BSM searches** enabled by Phase 2 ND will include: Neutrino Tridents, Heavy Neutral Leptons, Light Dark Matter, Heavy Axions, Tau Neutrinos

Summary

- DUNE is a best-in-class long-baseline neutrino-oscillation experiment, neutrino observatory, and new-physics search machine
- We are on track to deliver Phase I:
 - ProtoDUNE has successfully demonstrated the required LArTPC technology
 - Far-site civil construction is proceeding well, near site is fully designed, and beamline design is progressing well
 - Additional FD and ND prototyping is going well, with initial FD construction set to begin soon
- DUNE Phase-II is essential to complete and extend DUNE physics program
- Stay tune for an exciting time of DUNE!