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Big Questions in Neutrino Physics
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• Do neutrinos have large matter anti-
matter asymmetry?

• What’s the neutrino mass hierarchy?
• Are neutrino Dirac or Majorana 

particles?
• What is the neutrino mass?
• Are there sterile neutrinos?
• …



Deep Underground Neutrino Experiment
• Neutrino oscillation
- search for leptonic CP violation
- determine the mass ordering
- resolve the octant ambiguity
- test the unitarity of PMNS matrix 

with accelerator, atmospheric, and 
solar neutrinos

• Measurements with supernova 
neutrinos

• Search for new physics beyond the 
Standard Model such as
- proton decay
- sterile neutrino
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DUNE Collaboration
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• About 1,500 collaborators from 
more than 200 institutions in over 
30 countries

September 2023 Collaboration Meeting in Colombia



𝝂𝝁 → 𝝂𝒆 Oscillation 
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• Oscillation pattern is very sensitive to the δCP  and mass hierarchy 
• Matter effect: coherent forward charged-current (anti)-νe scattering on atomic electrons
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Long Baseline Neutrino Facility (LBNF)

• Neutrino beam 
• Proton Improvement Plan-II (PIP-II)
• 1.2 MW, upgradeable to 2.4 MW, 60-120 GeV protons 

pitching down at 5.8∘ before striking a graphite target
• 0.5-5 GeV (anti)neutrinos

• Near Detector Hall close to the Fermilab site boundary 6



LBNF @ Sanford Underground Research Facility

7

• In the Homestake gold mine, Lead, S. Dakota
• LBNF: Four caverns for detectors and 1 utility 

hall at 4850-ft below ground (1.5 km, 4300 mwe)



time

Liquid Argon Time Projection Chamber (LArTPC)  
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• Position resolution of ~mm with 
multiple 1D wire readouts

Drift velocity: 1.6 m/ms  
à  several ms drift time

• Particle identification (PID) with 
energy depositions and topologies

ARAPUCA Light Detection

P-terphenyl

https://iopscience.iop.org/article/10.1088/1748-0221/16/11/P11002


LArTPC: Excellent capability in identifying νe
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• Separation of e/γ 
– Gap Identification
– 1 MIP vs. 2 MIP dE/dx

• Comparison of PMCS and PRange 
to separate low-energy e/µ for 

    νe charge-current interaction
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Module 1: 17-kT Horizontal-Drift LArTPC
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Cryostat

• 150 APAs with 2560 charge readout 
channels, each with three ~5 mm-pitch wire 
planes

• 40 light readout channels with 1920 SiPMsAnode Plane Assembly (APA)



Module 2: 17-kT Vertical-Drift LArTPC

11

• 320 PCB-based Charge Readout Unit, 
each with 1536 channels (3 views with 5-7 
mm pitch) 

• 672 X-ARAPUCA Light Readout with 2 
channels each (160 SiPMs)

Charge readout Light readout



Precision 𝝂𝝁 → 𝝂𝒆 Oscillation Measurement  
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• Data points show

 Normal Mass Ordering (MO), 
 CP phase δCP = 0, 
 Octant sin2θ23 = 0.5

• 685 kt-MW-years exposure 

Varying δCP Varying MO and sin2θ23

Neutrino mode

Antineutrino mode

DUNE νe charged-current simulation 



Neutrino-Argon Interaction Cross Sections
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Scattering off 
single nucleon

Inelastic scattering: 
Excites the nucleon

Breaks up nucleon

FSI

• Charged-current ν-Ar interaction, 
allowing to tag neutrino flavor, is 
critical to oscillation measurement 

• Lack of a first-principle description of 
nuclear effects in neutrino-nucleus 
interaction 



Near Detectors (ND)

• Near Detector Liquid Argon TPC (ND-LAr) 
+ Muon Spectrometer (TMS) measure 
- ν interactions in 7 ✕ 5 optically isolated liquid 

argon TPC modules with pixelated readout

- TMS measures muons that exit ND-LAr

• System for on-Axis Neutrino Detection 
(SAND) measures neutrino interactions with 
various target materials (e.g. Hydrogen) and 
monitors the neutrino beam stability

14arXiv:2103.13910

ND-LAr KLOE → SAND

https://doi.org/10.48550/arXiv.2103.13910


DUNE-PRISM
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• Build a FD prediction directly 
from ND data by going off-axis

• Linearly combine many ND fluxes 
to match the FD oscillated flux

• Unknown or poorly modelled 
cross section effects directly 
measured

• Cancellation between ND and FD 
flux uncertainties



Neutrino Mass Ordering (MO)
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• With a 1300-km baseline, the matter 
effect is very large
• Determination of the MO over 

3σ in 3 years, over 5σ in 5 years since 
start of data taking, independent of 
external inputs (e.g. θ13) and δCP value

Δ𝜒! = 𝜒"#! − 𝜒$#!  



Search for Leptonic CP Violation (CPV)
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• Determination of CPV from the value 
of sinδCP
• Obtain sensitivity with Asimov data set
• ACE: Accelerator Complex Evolution
- Deliver higher beam power early
- Increase Main Injector ramp rate
- Increase proton intensity and ramp rate of 

booster
• FD 3/4: Far Detector 3 & 4
• MCND: Improved systematics with Near 

Detector
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Unitarity & Search for Sterile Neutrino
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Daya Bay PRL 130, 161802

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.161802


Octant Determination
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• Critical input for ν mass & model building
sin# 𝜃#$ > 0.5	 → 𝜈! > 𝜈%	𝑖𝑛	𝜈$
sin# 𝜃#$ = 0.5	 → 𝜈! = 𝜈%	𝑖𝑛	𝜈$
sin# 𝜃#$ < 0.5	 → 𝜈! < 𝜈%	𝑖𝑛	𝜈$

• Also, measure with tau neutrinos 



Supernova Neutrino 
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● Time (and energy) profile of the ν flux 
shed light on supernova physics

● Flux contains νe and νe as well as a 
component of the other flavors (νx) 

– DUNE has unique sensitivity to νe      
component

● O(100)s events per Far Detector module 
for galactic supernova burst
  – Reach extended outside the Milky Way

10 kpc supernova burst

DUNE νe



Solar Neutrinos 
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• Despite large neutron background below 
~10 MeV, DUNE can measure 8B solar 
flux and observe hep flux

 – Precision θ12 and Δm2
21 measurements with 

  solar neutrinos

● JUNO will have by far the best precision in θ12 and 
Δm2

21

● DUNE-JUNO comparison is sensitive to new 
physics

current



Searches for Proton Decay & 𝒏 − %𝒏 Oscillation
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0.5 bkg events for 400 kt-yr,  30% signal efficiency 
Sensitivity (no signal): 𝜏/B > 1.3⨯1034 yr  (90% C.L.)

50 cm

Free-neutron-equivalent sensitivity: 
𝜏free,osc > 5.5⨯108 s  (90% C.L.)



Dark matter at DUNE ND & FD

● ND-LAr is sensitive to DM produced in 
beamline, off-axis data helps to control 
SM backgrounds

● FD is sensitive to inelastic dark matter of 
cosmic origin
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Far-Site Excavation: ~80% 
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North Cavern

Central Utility Cavern
South Cavern

ν



Beamline and Near Detector site @ FNAL
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● Conventional facilities for the 
neutrino beamline and the Near 
Detector underground site have 
completed their designs

100% design complete

70% design complete



Prototyping: Horizontal Drift

26

• LArTPC 3.6 m horizontal drift + photon detection

• Exposed to test beams at CERN, momentum-dependent 
beam composition contains 𝑒, 𝑝, 𝜋±, 𝐾± , 𝜇	in 2018 & 
cosmic data in 2018 – 2020

• Under installation for this year’s running

3 GeV π+
π+ n→π0 p

π0 →γγ

stopping protoncosmic muon

ProtoDUNE DATA



Prototyping: Vertical Drift
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• Data taking @ CERN expected end 2023
• 8 charge readout units (3.4 m drift distance)
• 8 x-Arapuca photon detectors @ cathode and 

another 8 x-Arapuca photon detectors @ 
membrane
• 70% field cage coverage as in FD2

Bottom charge readout 
plane

Top-charge readout plane

Photon 
detector

Cathode + photon detector



Prototyping: Near Detectors

● Four ND-LAr prototype modules operated successfully at 
Bern with O(100) millions cosmic rays recorded, preparing 
2 ✕ 2 configuration for neutrino beam test at FNAL

● SAND: KLOE magnet extraction, LAr target design, staw 
tube tracker construction underway

● Also, progress in DUNE-PRISM and TMS
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SAND: 
LAr target KLOE magnet extraction



Schedule and Staging

• Phase I:  FD start @ 2028; ND & Beam start @ 2031
- Full near + far facility and infrastructure
- Upgradeable 1.2 MW neutrino beam
- Two 17-kT LArTPC modules
- Movable ND-LAr with TMS
- SAND

• Phase II (in 2030s): 
- Two additional Far Detector modules 
- Beam upgrade to > 2 MW (with ACE)
- More capable Near Detector 

29



DUNE Phase II Opportunity
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• Future far detector modules could extend the 
physics reach to lower energies and/or lower 
backgrounds  (e.g. Vertical Drift technology with 
enhanced light collection)

• BSM searches enabled by Phase 2 ND 
will include:  Neutrino Tridents, Heavy 
Neutral Leptons, Light Dark Matter, 
Heavy Axions, Tau Neutrinos



Summary

● DUNE is a best-in-class long-baseline neutrino-oscillation experiment, 
neutrino observatory, and new-physics search machine

● We are on track to deliver Phase I:
● ProtoDUNE has successfully demonstrated the required LArTPC technology
● Far-site civil construction is proceeding well, near site is fully designed, and beamline 

design is progressing well
● Additional FD and ND prototyping is going well, with initial FD construction set to 

begin soon

● DUNE Phase-II is essential to complete and extend DUNE physics  
program

● Stay tune for an exciting time of DUNE!
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