Recent developments in searching for light and ultralight dark matters

Haipeng An (Tsinghua University) Symposium on Frontiers of Underground Physics Oct. 29 – Nov. 2, 2023 @Chengdu

Outline

Outline

- Direct search for MeV scale dark matters
 - New materials
 - Boosted dark matter
- Ultralight bosonic dark matter
 - Using WIMP detectors to search for ultralight dark matters
 - Resonant cavities
 - Broad band searches
 - Using radio telescopes to search for ultralight dark matters

Thermal freeze-out as a benchmark model

Lighter DM ($m_{DM} < 50$ MeV)

• Materials with lower threshold (Skipper CCD) SENSEI, PRL 125 (2020) 171802, 48 gram-days DAMIC-M, PRL 130 (2023) 171003, 85 gram-days

New ideas for light dark matter search

• Superconducting detector O(meV) electron recoil,

Hochberg et al. PRL 116 (2016) 011301, Hochberg et al. JHEP 08 (2016) 057

• Superfluid helium4 detector O(meV) electron recoil,

Katelin Schutz and Kathryn Zurek, PRL 117 (2016) 121302,

Knapen et al. PRD 95 (2017) 056019

Superfluid helium3 detector sub eV nuclear recoil

QUEST-DMC, 2310.11304

- ALETHEIA: Using liquid helium TPC to search for low mass dark matter (nuclear recoil) , 2209.02320
- All the works to use the Migdal effect to search for small nuclear recoils.

Re-examine the Skipper CCD

• The region $m_D < 1$ MeV is still hard to search.

Kinetic energy is too small. Need a boost.

Solar reflection of dark matter

HA, Pospelov, Pradler, Ritz, PRL 120 (2018) 141801HA, Nie, Pospelov, Pradler, Ritz, PRD 104 (2021) 103026

Cosmic ray boosted dark matter

 \otimes

 \otimes

 \otimes

 \otimes

Energies and rates of the cosmic-ray particles

Nuclear recoil

Cosmic ray boosted dark matter

10⁻²⁴ 10^{-24} aas cloud 10^{-25} **10**⁻²⁵ gas cloud cooling cooling СМВ 10^{-26} **10⁻²⁶ CMB** 10^{-27} **10⁻²⁷** -MiniBooNE (this work) XOC $\sigma_{\rm SI} \, [{\rm cm}^2]$ 10^{-28} $\sigma_{\chi p} \ [{
m cm}^2]$ 20 10^{-28} 10^{-29} **10⁻²⁹** S RES 10^{-30} **10**⁻³⁰ Xenon 1t (this work) 10^{-31} CRESST **10**⁻³¹ CRESST **ENON1T** 10^{-32} analytic XENON1T 1 **10**⁻³² analytic $F(q^2) = 1$ MIGI 10^{-33} A B simulation **10**⁻³³ 10^{-34} **10⁻²** 10^{-3} 10^{-2} 10^{-3} **10**⁻¹ **10⁰** 10^{-1} 10^{0} 10¹ 10^{1} 10⁻⁴ 10^{-4} m_{γ} [GeV] m_{χ} [GeV]

Bringmann, Pospelov, PRL 122 (2019) 171801

Xia, Xu, Zhou, JCAP 02 (2022) 028

Rock attenuation effect is more carefully considered.

Cosmic ray boosted adrk matter

Ema, Sala, Sato, PRL 122 (2019) 181802

S.Ge, J.Liu, Q.Yuan, N.Zhou, PRL 126 (2021) 091804

Light dark matter from black hole evaporation

CDEX, PRD 108 (2023) 052006

Self-boosting dark matter

XENON1T, PRD 102 (2020) 072004

HA, D.Yang, 2006.15672

Fermionic DM Absorption

$$\begin{aligned} \mathcal{O}_{e\nu\chi}^{S} &\equiv (\bar{e}e)(\bar{\nu}_{L}\chi_{R}), \\ \mathcal{O}_{e\nu\chi}^{P} &\equiv (\bar{e}i\gamma_{5}e)(\bar{\nu}_{L}\chi_{R}), \\ \mathcal{O}_{e\nu\chi}^{V} &\equiv (\bar{e}\gamma_{\mu}e)(\bar{\nu}_{L}\gamma^{\mu}\chi_{L}), \\ \mathcal{O}_{e\nu\chi}^{A} &\equiv (\bar{e}\gamma_{\mu}\gamma_{5}e)(\bar{\nu}_{L}\gamma^{\mu}\chi_{L}), \\ \mathcal{O}_{e\nu\chi}^{T} &\equiv (\bar{e}\sigma_{\mu\nu}e)(\bar{\nu}_{L}\sigma^{\mu\nu}\chi_{R}), \end{aligned}$$

Ge et al., 2201.11497 PandaX, PRL 129, 161804 (2022)

Other proposals and constraints

- Dark matter boosted by supernovae neutrinos Lin et al. 2206.06864
- Atmospheric resonant production Darme et al. 2205.09773
- Blazor boosted DM (by protons from SMBH accretion) Granelli et al. 2111.13644, 2202.07598
- Electron recoils from terrestrial upscattering of inelastic DM Emken et al., 2112.08957
- Terrestrial Probes of Electromagnetically Interacting Dark Radiation
- Millicharged cosmic rays and Low Recoil Detectors

Harnik et al., 2010.11190

Kuo et al., 2102.08409

• ...

Ultralight dark matters

- Axion and axion-like particles $aF_{\mu\nu}\tilde{F}^{\mu\nu} = \partial_{\mu}a\bar{N}\gamma^{\mu}\gamma_{5}N = \partial_{\mu}a\bar{e}\gamma^{\mu}\gamma_{5}e$
- Dark photons

$$\frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu} A'_{\mu} (J^{\mu}_B - J^{\mu}_L) \quad A'_{\mu} (J^{\mu}_\mu - J^{\mu}_\tau)$$

2023

Helioscopes for axions

Helioscopes for dark photon

HA, Pospelov, Pradler, PLB 725 (2013) 190, & PRL 111 (2013) 041302

HA, Pospelov, Pradler, Ritz, PRD 102 (2020) 115022 XENON1T, PRD 106 (2021) 022001

Searching for ultralight dark matter directly with WIMP detectors

HA, Pospelov, Pradler, Ritz, PLB 747 (2015) 190-195

Resonant cavities

- Axion: a, \mathbf{E} mixing, $aF_{\mu\nu}\tilde{F}^{\mu\nu} \rightarrow a\mathbf{E} \cdot \mathbf{B} \rightarrow a\mathbf{E} \cdot \mathbf{B_0}$
- Dark photon: **A** , **A'** mixing, $\epsilon F_{\mu\nu}F'^{\mu\nu} \rightarrow e(A_{\mu} \epsilon A'_{\mu})J^{\mu}_{em}$

Resonant cavities for axions

Resonant cavities for dark photon dark matter

Searching for high frequency axions and dark photons with di-electric layers

• Dark photon dark matter oscillate to on-shell photons

A stack of dielectric layers, with alternating indices of refraction, provide a non-zero momentum for the photon to propagate.

Baryakhar, Huang, Lasenby, PRD 98 (2018) 035006

LAMPOST, PRL 128 (2022) 231802

Broad band searches

Broad band searches

ABRACADABRA, Phys. Rev. Lett. 127, 081801 (2021)

Searching for ultralight DM with radio telescopes

- -

• For axion or dark photon:

$$\omega^2 - k^2 = m^2$$

• For photon in plasma:

$$\omega^2 - k^2 = \omega_p^2$$

• For axions:

plasma + magnetic field

• For dark photon:

plasma

$$\begin{array}{c}
\mathbf{a} \mathbf{E} \cdot \mathbf{B} \\
\mathbf{a} \\
\mathbf{a} \\
\mathbf{B}_{0} \\
\mathbf{B}_{0} \\
\mathbf{A}_{1} \\
\mathbf{A$$

Ultralight axions dark matter

- Strong magnetic field to make the mixing larger.
- Electrons trapped by the magnetic field provide a plasma mass for photons.

Pshirkov, Popov, 0711.1264 F.P.Huang et al. PRD 97 (2018) 123001 Hook, Kahn, Safdi, Sun, PRL 121 (2018) 241102

Result from Green Bank Telescope

Foster et al., Phys.Rev.Lett. 125 (2020) 171301

What about white dwarves?

Wang, Bi, Yao, Yin, 2101.02585

m_a [eV]

Searching for dark photon dark matter resonant conversion in the Sun's atmosphere

Radiofrequency Dark Photon DM

HA, F.P. Huang, J.Liu, W.Xue, Phys.Rev.Lett. 126 (2021) 181102

Radiofrequency Dark Photon DM

• Searching for dark photon DM in LOFAR data

HA, X. Chen, S. Ge, J. Liu, Y. Luo, 2301.03622

Searching for dark photon dark matter directly with radio telescopes

- The metal plate converts A' to A
- The dark photon dark matter has an interaction with the electric current, $\epsilon e A'_{\mu} J^{\mu}$.

Searching for dark photon dark matter directly with radio telescopes

HA, S. Ge, W.-Q. Guo, X. Huang, J. Liu, Z Lu, 2207.05767, PRL 130 (2023) 181001

Summary

We need more ideas to search for dark matter.

