

Direct Dark Matter Search with XENON and DARWIN

Shingo Kazama (Nagoya University, KMI)

Symposium on Frontiers of Underground Physics 31st October 2023 K N K N

The XENON Project @ LNGS

28 institutions University of Zurich^{®®} 180 collaboration members Zurich 清莱大学 in 11 countries Tsinghus Universit Tsinghua 東京大学 Tokyo 西湖大學 WESTLAKE UNIVERSITY Ê., NAGOYA UNIVERSITY Nagoya KOBE UNIVERSITY 香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen 💽 NYU ABU DHAB NYUAD 10° s⁻] WIPP/LSBB Collaboration Meeting in Paris (2023 Sep.) Muon flux [cm⁻² Kamioka Soudan Y2L 10 Boulby LNGS 10^{-3} LSM SURF 10-9 SNOLAB Jin-Ping 10^{-10} 5 6 Depth [km w. e.]

The XENON and DARWIN Experiment

XENON

Total Xe: 25 kg Target: 14 kg Fiducial: 5.4 kg

Total Xe: 162 kg Target: 62 kg Fiducial: 48 kg

Total Xe: 3.2 ton Target: 2.0 ton Fiducial: 1.3 ton

DARWIN

XENONnT Total Xe: ~ 8.5 ton Target: ~5.9 ton Fiducial: ~4 ton

XENONnT

DARWIN

Total Xe: ~50 ton Target: ~40 ton Fiducial: >30 ton

DARWIN

2020

2027-2030s

The XENONnT Experiment

The XENONnT Detector

Radon distillation

Upgraded DAQ with dedicated high-energy readout

Liquid xenon purification

The XENONnT Timeline: Science Run 0

- 97.1 days exposure from Jul. 6th-Nov. 11th 2021
- 95.1 days lifetime corrected
- Rn distillation column in gas-only mode
- All (=494) but 17 PMTs working, gain stable at < 3 %
- Drift E-field: 23 V/cm
- Extraction Field: 2.9 kV/cm
- Localized high single-electron emission occurring seemingly at random, anode ramped down

Dual-Phase Time Projection Chamber

- ●1.3 m diameter and 1.5 m height
- ●5.9 t xenon instrumented, 8.5 t total xenon
- •5 electrodes and 2 sets of field shaping rings

•PTFE reflectors to maximize light collection efficiency (LCE ~ 36%)

●494 3" PMTs (R11410-21) in the top/bottom array (QE ~ 34%)

•short-circuit between the cathode and bottom screen limited the cathode voltage to -2.75 kV \rightarrow E-field at 23 V/cm

Veto Systems

• Gd-Water Cherenkov detector (SuperK/EGADS technology)

- In SRO, operated nVeto with pure-water
- •Tag neutrons through the neutron-capture on hydrogen which releases a 2.2 MeV γ -ray

• Covering the entire detector wall with ePTFE (~99% reflectivity)

- •Measured (68 ± 3) % tag. efficiency @ 600 μ s window and a 5-fold PMT coincidence, and 5 PE threshold
 - ●53 % tag. efficiency with SR0 configuration (250 μ s veto window)
 - 0.2 % Gd doping will improve it to 87 % $(150 \ \mu s, 10\text{-fold})$

LXe Purification

Direct liquid circulation with cryogenic pump

- 2 LPM (18h to exchange the entire volume of 8.5 ton)

Multiple filters

- Engelhard Q5: High eff / High Rn (for fast purification)
- SAES St707 getter pills: Mid eff / Low Rn (for SR0)

	Full TPC drift time	electron lifetime	electrons surviving a full drift length	0 ₂	Purifi sp
1T	0.67 ms	0.65 ms	30%	~1 ppb	0.65 ~3m
nT	2.2 ms	> 10 ms	> 90%	~ 0.02 ppb	5ms in

Radon Removal with Distillation

• Design: $1 \mu Bq/kg^{222}Rn$ level (XENON1T: $13 \mu Bq/kg$)

- •Constant removal of emanating Rn using difference in vapor pressure (Rn atom accumulates into LXe more than GXe)
- •Reached equilibrium concentration of 1.8 μ Bq/kg by gas extraction only (~8 times less BG w.r.t. 1T)
- •Additional factor 2 reduction is possible via liquid extraction for SR1

Detector Calibration

• Two ER calibration sources at low energy:

- ³⁷Ar, which gives mono-energetic 2.8 keV peak used to anchor the low-energy response and resolution models with high statistics
- ²¹²Pb from ²²⁰Rn gives a roughly flat β -spectrum to estimate cut acceptances and validates our energy threshold

One NR calibration in low energies:

- ²⁴¹AmBe, external source with clean NR selection via coincident tagging with nVeto which defines the NR response model for LXe

Energy Responss

Calibrations with various sources including ³⁷Ar, ^{83m}Kr, ²²⁰Rn, ²⁴¹AmBe • Reconstruct energy with g1/g2, validate efficiency/energy threshold with ³⁷Ar, ²²⁰Rn (²¹²Pb β-decay) $E = (n_{ph} + n_e) \cdot W$

Energy resolution at 1 keV is ~30%

$$=(\frac{cS1}{g1} + \frac{cS2}{g2}) \cdot 13.7(eV)$$

Detection and Selection Efficiency for WIMP Searches

• Detection efficiency:

- -threshold driven by a 3-fold PMT coincidence for S1
 -Efficiency estimated with two different methods
 -simulation-driven: full waveforms
 -data-driven method: bootstrapping from ^{83m}Kr and ³⁷Ar S1
- ROI for WIMP Searches
 - -cS1: [0 pe, 100 pe]
 - -cS2 : [10^{2.1} pe, 10^{4.1} pe]
- Event selection for WIMP Searches
 - -FV: (4.18 \pm 0.13) ton: ~4x larger than in XENON1T
 - -Veto with events in nVeto within 250µs after S1 signal
 - -BDT cut to suppress accidental coincidence of isolated S1/S2s
- Total acceptance > 10% for [3.1 keV_{NR}, 60 keV_{NR}]

ER Background in XENONnT

• Main BG = 214 Pb (daughter of 222 Rn)

Total ER background below 30 keV: (15.8±1.3) events/(t y keV): ~ 0.2 x XENON1T

• Lowest background achieved in a DM detector

Solar neutrinos: second largest background below 10 keV

No ER excess observed

	(1, 10) keV	(1, 14
²¹⁴ Pb	56 ± 7	980
⁸⁵ Kr	6 ± 4	90
Materials	16 ± 3	270
¹³⁶ Xe	8.7 ± 0.3	152
Solar v	25 ± 2	300
¹²⁴ Xe	2.6 ± 0.3	260
AC	0.70 ± 0.03	0.71
¹³³ Xe	-	160
^{83m} Kr	_	80

ER Background in XENONnT

Total ER background below 30 keV: (15.8±1.3) events/(t y keV): ~ 0.2 x XENON1T

• Lowest background achieved in a DM detector

Solar neutrinos: second largest background below 10 keV

No ER excess observed

	(1, 10) keV	(1, 14
²¹⁴ Pb	56 ± 7	980
⁸⁵ Kr	6 ± 4	90
Materials	16 ± 3	270
¹³⁶ Xe	8.7 ± 0.3	1520
Solar v	25 ± 2	300
¹²⁴ Xe	2.6 ± 0.3	260
AC	0.70 ± 0.03	0.71
¹³³ Xe	_	160
^{83m} Kr	_	80

Constraints on Bosonic Dark Matter/Axions

Constraints on Solar-Reflected DM

Backgrounds for WIMP Searches

ER background

•Dominated by radon background (β-decay of ²¹⁴Pb)

Surface background

- •210Pb plate-out on the PTFE wall of the TPC leading to 210Po
- a-decays with electron loss
- •Suppressed by FV cut

Accidental Coincidences (AC)

- •Random pairing of isolated S1 and S2 signals
- •Suppressed by BDT cut based on S2 shape features

NR backgrounds

- Radiogenic neutron rate prediction from NV tagging: ~ 1.1 events
- •CEvNS constrained from solar 8B neutrino flux: ~ 0.2 events
 (CEvNS search based on 2-fold coincidence is ongoing now)

Backgrounds for WIMP Searches

Full	ROI
135^{+12}_{-11}	0.87 ± 0
1.1 ± 0.2	0.42 ± 0
0.23 ± 0.06	0.022 ± 0
4.32 ± 0.15	0.363 ± 0
12^{+0}_{-4}	0.34 ⁺⁰
152 ± 12	1.95^{+0}_{-0}
2.4	1.2
152	3
	Full 135_{-11}^{+12} 1.1 ± 0.2 0.23 ± 0.06 4.32 ± 0.15 12_{-4}^{+0} 152 ± 12 2.4 152

No significant excess above the BG expectation was observed

position $\sigma = 3.22 \times 10^{-47} \text{ cm}^2$

WIMP Results

Blinding analysis

Strongest limit: 2.58(6.08) ×10⁻⁴⁷ cm² @ 28(100) GeV

• Factor 1.6 improvement in the upper limit w.r.t. XENON1T (but with considerably shorter livetime)

What's Next for the XENONnT Experiment

- will improve the WIMP sensitivity by a factor of ~10 with 20 t-yr exposure
- Currently our analysis is focusing on ⁸B CEvNS discovery
- Data taking ongoing with the improved ER background
 - Further reduction with GXe + LXe radon distillation: $1.8 \rightarrow 0.8 \,\mu \,\text{Bq/kg}$
- Neutron veto will be loaded with Gd-sulfate octahydrate to increase neutron detection efficiency
 - recently injected small amount of Gd, and gradually increasing the concentration
 - 53% \rightarrow 87% with a shorter 150 µs tagging window

The DARWIN Experiment

Physics Programs @ DARWIN

Dark Matter

- Dark photons
- Axion-like particles

in the

• Planck mass

Sun

- pp neutrinos
- Solar
- metallicity
- ⁷Be, ⁸B, hep

Supernova

- Early alert
- Supernova neutrinos
- Multi-messenger astrophysics

WIMPs

- Spin-independent
- Spin-dependent
- Sub-GeV
- Inelastic

Neutrino Nature

- Neutrinoless double beta decay
- Double electron capture
- Magnetic Moment

Cosmic Rays

• Atmospheric neutrinos

The DARWIN Detector

- Dual-phase LXe TPC: 2.6 m ø and 2.6 m height
- •50 t (40 t) LXe in total (in TPC)
- Top & bottom arrays of photosensors (e.g., 1800 3-inch PMTs)
- PTFE reflectors and Cu field shaping rings
- •Low-background Ti cryostat
- \odot Gd-doped water as n- and μ -vetos
- Alternative designs and photosensors under consideration (details later)

JCAP 1611 (2016) 017

WIMP Sensitivity

OARWIN will improve the BG level by ×10 w.r.t. LZ / XENONnT OARWIN can probe the entire parameter spaces up to neutrino fog • DARWIN can fully explore DMs with electroweak charges such as 3TeV thermal wino

Neutrino Physics @ DARWIN

Low-energy solar neutrinos

- Measurement of pp, ⁷Be, ¹³N, ¹⁵O and pep flux
- Constrain the weak mixing angle
- Distinguish high/low metalicity solar models

0νββ decay of ¹³⁶Xe

- Probe of the Dirac/Majorana nature of the neutrinos
- Sensitivity: $T^{0\nu\beta\beta} = 3.0 \times 10^{27}$ yr (90% C.L.) after 10 years of data taking

J. Aalbers et al. Eur. Phys. J. C 80, 1133, 2020

CEvNS

- Measurement of ⁸B solar neutrino flux
- Measurement of atmospheric neutrinos
- Multi-messenger astrophysics vis supernovae neutrinos

	- XEN Next Next Next	ONn7 gen gen gen	- 5.9 - 20 t - 60 t - 100	9t ; t
ia II				
15		175		200

Antlia II

Challenges for Scaling Up

•LUX-ZEPLIN and XENONnT: 1.5 m e- drift and ~ 1.5 m
diameter electrodes

DARWIN: 2.6 m \Rightarrow new challenges DARV

- Design of electrodes: robustness (minimal sagging/ deflection), maximal transparency, reduced e- emission
- Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
- In the second second

LXe Purity

Background mitigation (radon and neutron)

R&D: Full Scale Demonstrator

Two large-scale demonstrators, in z and in x-y, supported by ERC grants

- Xenoscope (Zurich): 2.6 m tall TPC
- Pancake (Freiburg): 2.6 m ø TPC in double-walled cryostats
 Both facilities available to the collaboration for R&D purposes

R&Ds for Radon Reduction

Online distillation:

- XENONnT already achieved 0.8 µBq/kg
- Surface coating
 - -Trap 222Rn after 226Ra decays
 - -Avoid Rn emanation
- Material screening
 - -Select low-emanation material

Hermetic TPC

-Inner LXe volume (clean) separated from outer (dirty)

Freiburg

Nagoya

Phys. J. C. 83, 9 (2023)

PTEP 2020, 11, 113H02

R&Ds for New Photosensors

SiPM	S13370-3050CN MPPC-VUV-LDC-050UM- (VUV4, STD) (SPL)			
Operation Voltage	40-50 V	80 - 100 V		
Active Area		3×3 mm ²		
Number of pixels	14400	14400	6400	
Pixel size	50×50 µm²	50×50 µm ²	100×100 µm	

R&Ds for Alternative Detector Designs

Single-Phase LXe TPC

- -Both S1/S2 created in liquid
- -No liquid level control is required
- -Reduce single-electron emission

- 10 µm anode wire in the center
- See Kaixuan's talk for more details

Freiburg

- "classical dual-phase" layout with 10 µm anode wire

Weizmann (+Nagoya)

-Microstrip plate coated on a MgF₂/Quartz plate

UCSD

JINST 18 P07027 (2023)

Freiburg

JINST 17 P03027 (2022)

JINST 17 P08002 (2022)

Future: XLZD Consortium

- detector
- MoU signed July 6, 2021 by 104 research group leaders from 16 countries
- Seven working groups in place to study science, detector, Xe procurement, R&D etc XLZD consortium (xlzd.org) to design and build a common multi-ton xenon experiment
- The XLZD consortium paves the way for a shared future in DM discovery → See more details in our white paper: J. Phys. G: Nucl. Part. Phys. 50 013001 (2023)

The XENONNT, LZ & DARWIN have joined forces to build the next generation of LXe dark matter

Back Up

Low Energy ER Calibration

Photon

10

²¹²Pb from ²²⁰Rn: β -decay (Q_{β} = 570 keV)

- Gives approximately flat energy spectrum
- •Used to
 - ·validate cut acceptances
 - •estimate photon/charge yield

³⁷Ar:

- Mono-energetic line @2.8 keV
- Allows to study performance with high resolution due to high statistics

. Removed via distillation (T $_{1/2} \sim 35$ days)

Energy threshold for ER signal is ~ 1keV

Low Energy NR Calibration

Energy threshold for NR signal is ~ 3keV

ER/NR Separation

Drift E-fielc Calibration

- Current drift field at ~23 V/cm
- Important to control field non-uniformities

z [cm]

Depth

- ·Calibration with ^{83m}Kr
 - -two consecutive lines 32.1 and 9.4 keV
 - -ratio of observed amplitudes \rightarrow drift field sensitivity
 - -tuning of COMSOL-based field simulation to current detector conditions
- Better than 10% match in fiducial volume for SR0

Eur. Phys. J. C 82, 361 (2022)

Tritium Handling @ XENONnT

XENONnT went through significant efforts to reduce possible sources of a low-energy excess

- 3 months of outgassing
- · 3 weeks of GXe (warm) cleaning with hot getters
- GXe purified with Kr-removal system during its transfer into the gas storage system, resulting in less HT
- When filling to TPC, GXe was purified with hot getters, which include H2 removal units.

Special mode:

- "tritium enhanced data" (TED) bypassing getters
- orders of magnitude in hydrogen level increase
 (conservative at least 10x)
- \cdot 14.3 days of TED data

Tritium Handling @ XENONnT

XENONnT went through significant efforts to reduce possible sources of a low-energy excess

- 3 months of outgassing
- · 3 weeks of GXe (warm) cleaning with hot getters
- GXe purified with Kr-removal system during its transfer into the gas storage system, resulting in less HT
- When filling to TPC, GXe was purified with hot getters, which include H2 removal units.

Special mode:

- "tritium enhanced data" (TED) bypassing getters
- orders of magnitude in hydrogen level increase (conservative – at least 10x)
- · 14.3 days of TED data

Result of blind TED analysis \rightarrow No tritium excess

 \rightarrow Tritium is not considered in the BG model

