Symposium on Frontiers of Underground Physics

Hunting for (low-mass) particle dark matter - some naïve and personal thoughts

Junhui Liao

4 10 1 4 10 1

Outline

- DM should be there: astrophysicist and cosmologist
- Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
- The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts
 - The progress of the ALETHEIA project
 - ALETHEIA Introduction
 - ALETHEIA prototype detector: the 30g-V1 LHe
 - ALETHEIA prototype detector: TPB coating on a PTFE chamber
 - ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
 - Ongoing tests at CIAE
 - Summary

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
- The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts
- 4) The progress of the ALETHEIA project
 - ALETHEIA Introduction
 - ALETHEIA prototype detector: the 30g-V1 LHe
 - ALETHEIA prototype detector: TPB coating on a PTFE chamber
 - ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
 - Ongoing tests at CIAE
 - Summary

Astrophysical and cosmological evidence of DM existence.

イロト イヨト イヨト イヨト

э

Astrophysicists and cosmologists observed DM.

2 E

Outline

DM "review" (kind of)

- DM should be there: astrophysicist and cosmologist
- Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
- The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts
- 4) The progress of the ALETHEIA project
 - ALETHEIA Introduction
 - ALETHEIA prototype detector: the 30g-V1 LHe
 - ALETHEIA prototype detector: TPB coating on a PTFE chamber
 - ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
 - Ongoing tests at CIAE
 - Summary

No any convincing DM signals from each and every hunting strategy.

Particle physicists working in DM.

Particle physicists working in DM

Ten years ago

Did not discover dark matter yet, discoverd "dark life" instead

Junhui Liao

Now

Research on DM: Astrophysicists V.S. particle physicists

• Left picture: Astrophysicists working in DM. Right picture: Particle physicists working in DM.

Particle physicist professors working in DM (Based on a true story.)

Theoretical challenges

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?

The challenges to DM direct detection community Theoretical challenges

- The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

4 The progress of the ALETHEIA project

- ALETHEIA Introduction
- ALETHEIA prototype detector: the 30g-V1 LHe
- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

• Neutralino matches WIMPs perfect well, is just one of the 10+ SUSY particles.

- Neutralino matches WIMPs perfect well, is just one of the 10+ SUSY particles.
- SUSY can have more than 100 parameters, the characters of SUSY particles is highly undetermined. It is expected but have not shown up in LHC 13 TeV data.

than the electroweak scale. Thus, if supersymmetry is to be relevant to electroweak-symmetry breaking, the signs of supersymmetry must become visible near the electroweak scale, $E \leq \mathcal{O}(\text{TeV})$. If a supersymmetric particle spectrum does not become manifest by the time accelerator experiments reach such a scale, then the solution to the fine-tuning problem must be sought elsewhere. Thus supersymmetry is an interesting gamble. If it proves to be a winning bet, the rewards will be staggering. If it proves to be irrelevant to electroweak physics, then the absence of a viable treatment for the fine-tuning problem will be felt.

- Neutralino matches WIMPs perfect well, is just one of the 10+ SUSY particles.
- SUSY can have more than 100 parameters, the characters of SUSY particles is highly undetermined. It is expected but have not shown up in LHC 13 TeV data.
- There is no model more elegant than Neutralino to interpret WIMPs so far.

than the electroweak scale. Thus, if supersymmetry is to be relevant to electroweak-symmetry breaking, the signs of supersymmetry must become visible near the electroweak scale, $E \leq \mathcal{O}(\text{TeV})$. If a supersymmetric particle spectrum does not become manifest by the time accelerator experiments reach such a scale, then the solution to the fine-tuning problem must be sought elsewhere. Thus supersymmetry is an interesting gamble. If it proves to be a winning bet, the rewards will be staggering. If it proves to be irrelevant to electroweak physics, then the absence of a viable treatment for the fine-tuning problem will be felt.

- Neutralino matches WIMPs perfect well, is just one of the 10+ SUSY particles.
- SUSY can have more than 100 parameters, the characters of SUSY particles is highly undetermined. It is expected but have not shown up in LHC 13 TeV data.
- There is no model more elegant than Neutralino to interpret WIMPs so far.
- Some physicists thought that "WIMPs are dead".

than the electroweak scale. Thus, if supersymmetry is to be relevant to electroweak-symmetry breaking, the signs of supersymmetry must become visible near the electroweak scale, $E \leq \mathcal{O}(\text{TeV})$. If a supersymmetric particle spectrum does not become manifest by the time accelerator experiments reach such a scale, then the solution to the fine-tuning problem must be sought elsewhere. Thus supersymmetry is an interesting gamble. If it proves to be a winning bet, the rewards will be staggering. If it proves to be irrelevant to electroweak physics, then the absence of a viable treatment for the fine-tuning problem will be felt.

- Neutralino matches WIMPs perfect well, is just one of the 10+ SUSY particles.
- SUSY can have more than 100 parameters, the characters of SUSY particles is highly undetermined. It is expected but have not shown up in LHC 13 TeV data.
- There is no model more elegant than Neutralino to interpret WIMPs so far.
- Some physicists thought that "WIMPs are dead".
- Some physicists do not agree that "WIMPs are dead", Jonathan Feng, Dan Hooper, Michael Peskin, Yufeng Zhou ...

than the electroweak scale. Thus, if supersymmetry is to be relevant to electroweak-symmetry breaking, the signs of supersymmetry must become visible near the electroweak scale, $E \leq \mathcal{O}(\text{TeV})$. If a supersymmetric particle spectrum does not become manifest by the time accelerator experiments reach such a scale, then the solution to the fine-tuning problem must be sought elsewhere. Thus supersymmetry is an interesting gamble. If it proves to be a winning bet, the rewards will be staggering. If it proves to be irrelevant to electroweak physics, then the absence of a viable treatment for the fine-tuning problem will be felt.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- The challenges to DM direct detection community
 Theoretical challenges

The opportunities for DM particle physicists

- New thoughts/actions worldwide
- My thoughts
- The progress of the ALETHEIA project
 - ALETHEIA Introduction
 - ALETHEIA prototype detector: the 30g-V1 LHe
 - ALETHEIA prototype detector: TPB coating on a PTFE chamber
 - ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
 - Ongoing tests at CIAE
- Summary

• EU: Direct detection of dark matter – APPEC committee report, arXiv: 2104.07634.

- EU: Direct detection of dark matter APPEC committee report, arXiv: 2104.07634.
- US: the Snowmass 2021 meeting (P5). arXiv: 2211.09978, 2203.07700, 2209.07426, 2203.08297, ...

A B F A B F

- EU: Direct detection of dark matter APPEC committee report, arXiv: 2104.07634.
- US: the Snowmass 2021 meeting (P5). arXiv: 2211.09978, 2203.07700, 2209.07426, 2203.08297, ...
- LXe community, LZ + XENON → a new EU-US LXe collaboration; LAr, DEAP + DS20k + ArDM + ... → a new global LAr collaboration.

A B K A B K

- EU: Direct detection of dark matter APPEC committee report, arXiv: 2104.07634.
- US: the Snowmass 2021 meeting (P5). arXiv: 2211.09978, 2203.07700, 2209.07426, 2203.08297, ...
- LXe community, LZ + XENON → a new EU-US LXe collaboration; LAr, DEAP + DS20k + ArDM + ... → a new global LAr collaboration.
- China: CEDX 50 kg HPGe, CDEX-100/1T (?), PandaX-30T (?), DS-1ton for low-mass DM (?);
 ALETHEIA, R&D stage

• □ ▶ • □ ▶ • □ ▶ • □ ▶

- EU: Direct detection of dark matter APPEC committee report, arXiv: 2104.07634.
- US: the Snowmass 2021 meeting (P5). arXiv: 2211.09978, 2203.07700, 2209.07426, 2203.08297, ...
- LXe community, LZ + XENON → a new EU-US LXe collaboration; LAr, DEAP + DS20k + ArDM + ... → a new global LAr collaboration.
- China: CEDX 50 kg HPGe, CDEX-100/1T (?), PandaX-30T (?), DS-1ton for low-mass DM (?);
 ALETHEIA, R&D stage
- ALETHEIA progressed significantly since 2020: demonstrated the viability of single-phase LHe TPCs;

R&D underway: dual-phase LHe TPCs.

Report of the Topical Group on Particle Dark Matter for Snowmass 2021, arXiv: 2209.07426, 1/2

Name	Technology	Target	Active	Experiment	Start Ops	End Ops	
			Mass	Location			
Currently Running or Under Construction							
LZ	TPC	LXe	7,000 kg	SURF	2021	2026	
PandaX-4T	TPC	LXe	4,000 kg	CJPL	2021	2025	
XENONnT	TPC	LXe	7,000 kg	LGNS	2021	2025	
DEAP-3600	Scintillator	LAr	3,300 kg	SNOLAB	2016	2025	
Darkside-20k	TPC	LAr	50 t	LNGS	2027	2035	
DAMA/LIBRA	Scintillator	NaI	250 kg	LNGS	2003		
ANAIS-112	Scintillator	NaI	112 kg	Canfranc	2017	2022	
SABRE PoP	Scintillator	NaI	5 kg	LNGS	2021	2022	
COSINE-200	Scintillator	NaI	200 kg	YangYang	2022	2025	
CDEX-10	Ionization (77K)	Ge	10 kg	CJPL	2016		
EDELWEISS	Cryo Ioniza-	Ge	33 g	LSM	2019		
III (High Field)	tion / HV						
SuperCDMS	Cryo Ioniza-	Ge/Si	5 kg/1 kg	SNOLAB	2020	2022	
CUTE	tion / HV						
SuperCDMS	Cryo Ioniza-	Ge/Si	11 kg/3	SNOLAB	2023	2028	
SNOLAB	tion / HV		kg				
CRESST-III	Bolometer	CaWO4		LNGS	2020		
(HW Tests)	Scintillation						
PICO-40	Bubble	C3F8	35 kg	SNOLAB	2020		
	Chamber						
NEWS-G	Gas Drift	CH4		SNOLAB	2020	2025	
DAMIC-M pro-	CCD Skip-	Si	18 g	LSM	2022	2023	
totype	per						
DAMIC-M	CCD Skip-	Si	1 kg	LSM	2024	2025	
	per						
SENSEI	CCD Skip-	Si	2 g	Fermilab	2019	2020	
	per						
SENSEI	CCD Skip-	Si	100 g	SNOLAB	2021	2023	
	per						

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

arXiv: 2209.07426, 2/2

Name	Technology	Target	Active	Experiment	Start Ops	End Ops	
			Mass	Location			
Planned							
SABRE (North)	Scintillator	NaI	50 kg	LNGS	2022	2027	
SABRE (South)	Scintillator	NaI	50 kg	SUPL	2022	2027	
COSINE-200	Scintillator	NaI	200 kg	South Pole	2023		
South Pole							
COSINUS	Bolometer Scintillator	NaI		LNGS	2023		
Darwin / XLZD (US LXe G3)	TPC	LXe	50,000 kg	undetermined	2028	2033	
ARGO	TPC or Scin- tillator	LAr	300 t	SNOLAB	2030	2035	
CDEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg	CJPL	202X		
PICO-500	Bubble Chamber	C3F8	430 kg	SNOLAB	2021		
Concept or R&D							
Oscura	CCD Skip- per	Si	10 kg Si	SNOLAB	2025	2028	
SBC	Bubble Chamber	LAr	1 t	SNOLAB	2028		
SNOWBALL	Supercooled Liquid H2O						
DarkSide-	TPC	LAr	1.5 t				
LowMass							
ALETHEIA	TPC	He		China Inst.			
				At. Energy			
TESSERACT	Cryo TES	LHe, SiO ₂ , Al ₂ O ₃ , GaAs		undetermined	2026		
CYGNO	Gas Direc- tional	$\mathrm{He} + \mathrm{CF}_4$	0.5 - 1 kg	LNGS	2024		
CYGNUS	Gas Direc- tional	$He + SF_6/CF_4$		Multiple sites			
Windchime	Accelerometer array			Multiple sites			
MAGNETO- χ	Cryogenic MMC	Diamond, Sapphire, etc.					

Junhui Liao

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Sub-GeV DM new techniques, Dan McKinsey at PKU in 2019

WIMPs	Light DM, existing techniques	This talk (sub-GeV new techniques)
DAMA/LIBRA	Argon S2-only	LXe/LAr bubble chamber
COSINE	DarkSide-LowMass	Snowball chamber
DarkSide-50	LUX: Xe Migdal effect	Xenon S2-only
XENON1T	DAMIC	Graphene
PICO	NEWS-G	Internally amplified Ge
DarkSide-20k	SuperCDMS	Color centers
PandaX-4T	CRESST	Scintillating crystals (GaAs, CsI, NaI)
LUX/ZEPLIN		Polar crystals
XENONnT		Diamond
DARWIN		Superconductors
		Superfluid helium

This is not a fully exhaustive list; apologies if your favorite new technique is not covered!

My thoughts

Outline

- - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- - Theoretical challenges

The opportunities for DM particle physicists

- New thoughts/actions worldwide
- My thoughts
- - ALETHEIA Introduction
 - ALETHEIA prototype detector: the 30g-V1 LHe
 - ALETHEIA prototype detector: TPB coating on a PTFE chamber
 - ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
 - Ongoing tests at CIAE

 There exist tens of elementary particles in the SM, reasonable to hypothesize there are more than one type of DM particle; some generate ER, some NR ⇒ ER and NR could co-exist in a DM detector's same dataset.

- There exist tens of elementary particles in the SM, reasonable to hypothesize there are more than one type of DM particle; some generate ER, some NR ⇒ ER and NR could co-exist in a DM detector's same dataset.
- Traditionally, WIMPs are supposed to generate NR events; actually, it could generate ER events also, PRD 85.076007 ⇒
 Even if DM is all made of WIMPs, it could generate both ER and NR events.

- There exist tens of elementary particles in the SM, reasonable to hypothesize there are more than one type of DM particle; some generate ER, some NR ⇒ ER and NR could co-exist in a DM detector's same dataset.
- Traditionally, WIMPs are supposed to generate NR events; actually, it could generate ER events also, PRD 85.076007 ⇒
 Even if DM is all made of WIMPs, it could generate both ER and NR events.
- From a DM detector's point of view: there could exist three possible excesses: (a) ER-only excess, (b) NR-only excess, or (c) ER & NR co-existening excesses.

- There exist tens of elementary particles in the SM, reasonable to hypothesize there are more than one type of DM particle; some generate ER, some NR ⇒ ER and NR could co-exist in a DM detector's same dataset.
- Traditionally, WIMPs are supposed to generate NR events; actually, it could generate ER events also, PRD 85.076007 ⇒
 Even if DM is all made of WIMPs, it could generate both ER and NR events.
- From a DM detector's point of view: there could exist three possible excesses: (a) ER-only excess, (b) NR-only excess, or (c) ER & NR co-existening excesses.
- To be able to handle the three possible excesses, single-digit numbers of ER and NR background events are desired ← <u>ALETHEIA can do that</u>, Eur. Phys. J. Plus (2023) 138:128.

- There exist tens of elementary particles in the SM, reasonable to hypothesize there are more than one type of DM particle; some generate ER, some NR ⇒ ER and NR could co-exist in a DM detector's same dataset.
- Traditionally, WIMPs are supposed to generate NR events; actually, it could generate ER events also, PRD 85.076007 ⇒
 Even if DM is all made of WIMPs, it could generate both ER and NR events.
- From a DM detector's point of view: there could exist three possible excesses: (a) ER-only excess, (b) NR-only excess, or (c) ER & NR co-existening excesses.
- To be able to handle the three possible excesses, single-digit numbers of ER and NR background events are desired ← <u>ALETHEIA can do that</u>, Eur. Phys. J. Plus (2023) 138:128.
- For more details, arXiv: 2302.12406.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
 - The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

The progress of the ALETHEIA project

- ALETHEIA Introduction
- ALETHEIA prototype detector: the 30g-V1 LHe
- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

• ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.

э

- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- TPC is arguably the best technology in the community: LZ, PandaX, XENON; DarkSide, DEAP.

- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- TPC is arguably the best technology in the community: LZ, PandaX, XENON; DarkSide, DEAP.
- LHe is arguably the cleanest bulk material: nothing is solvable in LHe except ³He, which is extremely rare in nature.

Image: Image:

- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- TPC is arguably the best technology in the community: LZ, PandaX, XENON; DarkSide, DEAP.
- LHe is arguably the cleanest bulk material: nothing is solvable in LHe except ³He, which is extremely rare in nature.
- A 1.5-m LHe TPC with 1 ton* yr exposure only has 11 ER and 0.5 NR events. Applying 99.5% ER cut and 50% NR cut, only 0.3 events for 1 ton*yr exposure.

ALETHEIA

- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- TPC is arguably the best technology in the community: LZ, PandaX, XENON; DarkSide, DEAP.
- LHe is arguably the cleanest bulk material: nothing is solvable in LHe except ³He, which is extremely rare in nature.
- A 1.5-m LHe TPC with 1 ton* yr exposure only has 11 ER and 0.5 NR events. Applying 99.5% ER cut and 50% NR cut, only 0.3 events for 1 ton*yr exposure.
- For details: Eur. Phys. J. Plus (2023) 138:128.

ALETHEIA NR channel: Projected sensitivities

• 1 ton*yr ALETHEIA can "touch down" the ⁸B solar ν fog (Assuming IBF, 50% Eff.).

ALETHEIA review, Oct 2019.

Junhui Liao

Image: Image:

ALETHEIA Introduction

ALETHEIA review, Oct 2019.

• "It is possible that liquid helium could enable especially low backgrounds because of its powerful combination of intrinsically low radioactivity, ease of purification, and charge/light discrimination capability."

ALETHEIA collaborators so far

5 institutions (increasing), ~ 20 members

- CIAE (China Institute of Atomic Energy), ~ 10 researchers.
- Peaking University, 1 + 2 (?) researchers.
- University of South China, 1 + 1(?) researchers.
- China Southern Power Grid Electric Power Research Institute, 5 researchers.
- SCRI (Shanghai Cable Research Institute), 3 researchers.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2) The challenges to DM direct detection community
 - Theoretical challenges
 - The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

The progress of the ALETHEIA project

ALETHEIA Introduction

ALETHEIA prototype detector: the 30g-V1 LHe

- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

The R&D of the 30g-V1 LHe prototype.

• Left picture: the detector successfully cooled to 4 K.

The R&D of the 30g-V1 LHe prototype.

- Left picture: the detector successfully cooled to 4 K.
- Right plot: dark current is less than 10 pA under several circumstances.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
 - The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

The progress of the ALETHEIA project

- ALETHEIA Introduction
- ALETHEIA prototype detector: the 30g-V1 LHe
- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

LHe light peaked 80 nm, TPB to convert into visible light.

• Left picture: the principle of TPB coating.

- TPB molecules move inside of the source.
- TPB molecules escape from the source then fly toward the inner walls of the cylindrical PTFE cells.

LHe light peaked 80 nm, TPB to convert into visible light.

- Left picture: the principle of TPB coating.
- Right plot: top view of the coated 10-cm size PTFE chamber.
- Published: Acta Phys. Sin. Vol. 71, No. 22 (2022) 229501

TPB molecules move inside of the source.

TPB molecules escape from the source then fly toward the inner walls of the cylindrical PTFE cells.

The coating source.

• Left picture: The source's drawing.

The coating source.

- Left picture: The source's drawing.
- Right plot: The image of the source.

(D) (A) (A) (A)

Coating process.

• Left picture: Coating into steps.

э

Coating process.

- Left picture: Coating into steps.
- Right plot: real time monitoring on TPB thickness.

Figure out the TPB coating thickness.

• Left picture: sample films inside of the chamber.

• • • • • • • • • • • • • •

Figure out the TPB coating thickness.

- Left picture: sample films inside of the chamber.
- Right plot: calculate TPB's thickness based on the mass difference.

Table 1. TPB coating thickness calculation based on the mass difference before and after coating on t aluminum plates

			· ·	
Sample #	Plate area (cm^2)	Plate position	Mass increase (mg)	thickness (µm)
1	2	Chamber top	0.75 ± 0.02	$3.48 {\pm} 0.11$
2	2	Chamber top	0.46 ± 0.04	2.13 ± 0.17
3	2	Curved surface	0.87±0.04	4.03±0.16
4	6	Chamber bottom	2.54 ± 0.02	3.92±0.03

Figure out the TPB coating thickness.

- Left picture: sample films inside of the chamber.
- Right plot: calculate TPB's thickness based on the mass difference.
- The third method to figure out TPB's thickness is based on the TPB mass consumed, 0.2 g.
- All of the three methods returned consistent thickness.

aluminum plates							
Sample #	Plate area (cm^2)	Plate position	Mass increase (mg)	thickness (μm)			
1	2	Chamber top	0.75±0.02	3.48±0.11			
2	2	Chamber top	0.46 ± 0.04	$2.13 {\pm} 0.17$			
3	2	Curved surface	$0.87 {\pm} 0.04$	4.03 ± 0.16			
4	6	Chamber bottom	$2.54 {\pm} 0.02$	$3.92 {\pm} 0.03$			

Table 1. TPB coating thickness calculation based on the mass difference before and after coating on the

TPB coating film, exposed at 4 K.

• Left picture: SEM scanning imagine on TPB coated film experienced at 4 K.

TPB coating film, exposed at 4 K.

- Left picture: SEM scanning imagine on TPB coated film experienced at 4 K.
- Right plot: SEM scanning imagine on TPB coated film W/O cryogenic experience.
- Published in JINST, 2022 JINST 17 P12001.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
 - The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

The progress of the ALETHEIA project

- ALETHEIA Introduction
- ALETHEIA prototype detector: the 30g-V1 LHe
- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

SiPMs tests at 4 K, with a LED

• Left picture: experimental setup (Inside of the G-M cryocooler).

SiPMs tests at 4 K, with a LED

- Left picture: experimental setup (Inside of the G-M cryocooler).
- Right plot: Preliminary results.

SiPMs test at 4 K, IV curve measurement

• Left picture: SiPMs IV curve tests, 20 K - RT.

SiPMs test at 4 K, IV curve measurement

- Left picture: SiPMs IV curve tests, 20 K RT.
- Right plot: SiPMs IV curve tests, (4 20) K, 10 V plateau existed.

FBK SiPM: resistance VS temp, and Drop voltage VS Temp.

• Left picture: FBK SiPM, resistance VS temp.

FBK SiPM: resistance VS temp, and Drop voltage VS Temp.

- Left picture: FBK SiPM, resistance VS temp.
- Right plot: FBK SiPM, voltage VS temp.

FBK SiPM @ 4 K, typical analog signal.

 38 FBK SiPMs tested. Most (36/38) of FBK SiPMs are functional at 4 K. More detailed: Eur. Phys. J. Plus (2023) 138:128.

Outline

- DM "review" (kind of)
 - DM should be there: astrophysicist and cosmologist
 - Particle physicists: where is the damn DM?
- 2 The challenges to DM direct detection community
 - Theoretical challenges
 - The opportunities for DM particle physicists
 - New thoughts/actions worldwide
 - My thoughts

The progress of the ALETHEIA project

- ALETHEIA Introduction
- ALETHEIA prototype detector: the 30g-V1 LHe
- ALETHEIA prototype detector: TPB coating on a PTFE chamber
- ALETHEIA prototype detector: (preliminary) SiPMs tests at 4 K.
- Ongoing tests at CIAE
- Summary

A 10-cm chamber, ~ 100 g LHe prototype detector is assembling.

- E - - E

A 10-cm chamber, ~ 100 g LHe prototype detector is assembling.

• Left picture: An integrating sphere with a SiPM, an LED, and a photodiode on the sphere on it.

- Left picture: An integrating sphere with a SiPM, an LED, and a photodiode on the sphere on it.
- Right picture: Q fit, Gaussian convoluted with Poisson (~ 1.6 Phe).

Junhui Liao

- Left picture: An integrating sphere with a SiPM, an LED, and a photodiode on the sphere on it.
- Right picture: Q fit, Gaussian convoluted with Poisson (~ 1.6 Phe).
- Q fit → SiPM gain → PDE = (current_on_ SiPM / Gain) / current_on_diode.

- Left picture: An integrating sphere with a SiPM, an LED, and a photodiode on the sphere on it.
- Right picture: Q fit, Gaussian convoluted with Poisson (~ 1.6 Phe).
- Q fit \rightarrow SiPM gain \rightarrow PDE = (current_on_SiPM / Gain) / current_on_diode.
- Preliminary results: PDE (Photon Detection Efficiency) ~ 50% at 10 K and OV+5 V, consistent with DS-20k estimated at LAr temperature, 40%.

Ongoing tests at CIAE

Transmitting ~ MV (Million Volts) into an LHe TPC, 2310.12504

 10 kV/cm drift field is trade-off to get reasonable drift speed (2 m/s) and fraction of ion-e separation (~50%); 1m size TPC (~ 100 kg LHe) requires 1 MV.

FT1: 50 kV, RT, one side is air, another is vacuum.

FT2: 500 kV or higher, both sides are RT or 77K and vacuum, no need to seal.

FT3: 500 kV or higher, one side is vacuum and ~ 30 K, another is LHe and 4 K, seal vacuum from LHe.

FGS: Immersed in 4 K LHe.
Transmitting ~ MV (Million Volts) into an LHe TPC, 2310.12504

- 10 kV/cm drift field is trade-off to get reasonable drift speed (2 m/s) and fraction of ion-e separation (~50%); 1m size TPC (~ 100 kg LHe) requires 1 MV.
- Left plot: the preliminary scheme. Right plot: an electrode capable of delivering 100 kV is house-made at CIAE. Testing underway.

- FT3: 500 kV or higher, one side is vacuum and ~ 30 K, another is LHe and 4 K, seal vacuum from LHe.
- FGS: Immersed in 4 K LHe.

A novel NR calibrating method with the COMIMAC facility, 2310.12496

• ALETHEIA detectors need to be calibrated down to ~ 1 keV_{nr}.

A novel NR calibrating method with the COMIMAC facility, 2310.12496

- ALETHEIA detectors need to be calibrated down to ~ 1 keV_{nr}.
- Conventional NR calibrations are difficult in providing (i) ~ 1 keV neutrons, (ii) mono-energetic neutrons (accelerator neutrons are not truly mono-energetic).

A novel NR calibrating method with the COMIMAC facility, 2310.12496

- ALETHEIA detectors need to be calibrated down to ~ 1 keV_{nr}.
- Conventional NR calibrations are difficult in providing (i) ~ 1 keV neutrons, (ii) mono-energetic neutrons (accelerator neutrons are not truly mono-energetic).
- The COMIMAC facility, provides helium beam, being implemented in NR calibration for helium gas detector.

Summary

- DM sector might have more than one elemental particle. DM signals not necessary to show up as NR recoil only: ER-only and ER&NR coexistence also possible.
- ALETHEIA project is supposed to only have single-digit number of ER and NR backgrounds with a 1 ton*yr exposure, therefore, be sensitive to any kinds of DM signal combinations.
- We demonstrated the viability of a single-phase LHe TPC. The R&D on a dual-phase LHe TPC is underway.

Summary

- DM sector might have more than one elemental particle. DM signals not necessary to show up as NR recoil only: ER-only and ER&NR coexistence also possible.
- ALETHEIA project is supposed to only have single-digit number of ER and NR backgrounds with a 1 ton*yr exposure, therefore, be sensitive to any kinds of DM signal combinations.
- We demonstrated the viability of a single-phase LHe TPC. The R&D on a dual-phase LHe TPC is underway.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Summary

- DM sector might have more than one elemental particle. DM signals not necessary to show up as NR recoil only: ER-only and ER&NR coexistence also possible.
- ALETHEIA project is supposed to only have single-digit number of ER and NR backgrounds with a 1 ton*yr exposure, therefore, be sensitive to any kinds of DM signal combinations.
- We demonstrated the viability of a single-phase LHe TPC. The R&D on a dual-phase LHe TPC is underway.

• □ ▶ • □ ▶ • □ ▶ • □ ▶