Projections of Discovery Potentials of 0νββ Experiments

Li, Hau-Bin (李浩斌) Academia Sinica, Taipei (中央研究院)

<u>OUTLINE</u>: Statistical concerns on 0vββ sensitivities (ref : arXiv:2308.07049)

Symposium on Frontiers of Underground Physics

29 October 2023 to 2 November 2023

0

Chengdu City, Sichuan Province

double beta decay

$$2\nu\beta\beta: {}^{N}_{Z}A_{\beta\beta} \rightarrow {}^{N-2}_{Z+2}A + 2e^{-} + 2\bar{v_e}$$

- a second-order weak process (Goeppert-Mayer, 1935)
- detectable if 1^{st} order β -decay is forbidden
- in SM for even-N even-Z nuclei:

$$0\nu\beta\beta: {}^{N}_{Z}A_{\beta\beta} \rightarrow {}^{N-2}_{Z+2}A + 2e^{-}$$
 (Furry, 1939)

- forbidden in Standard Model
- never been observed, rare.
- only way to detect Majorana neutrino
- $< m_{\beta\beta} > \neq 0$, and lepton number violation
- signature: mono-energetic peak at $Q_{\beta\beta}$

2

half-life of $0\nu\beta\beta$

current/projected sensitivities on 0vßß

hypothesis test

what is $T^{0\nu}_{1/2}$ (or $S^{0\nu}_{obs}$) to define positive claim of $0\nu\beta\beta$?

 \rightarrow frequentist approach, profile likelihood ratio as test-statistic.

in this report we adopted α =0.00135 (3 σ) for positive claim and β =0.5. \rightarrow alternative-hypothesis that has 50% of chance to see >3 σ effect (equivalent to 50% of the best-fit S with 3 σ -error-bar not include 0)

Neyman construstion

in frequentist statistic, C.I. is defined by cooverage:

the
$$P^{3\sigma_{50}}$$
 criteria:
 $\alpha \equiv \int_{t_{\alpha}}^{\infty} P(q_0|H_0) \, dq_0 = 0.00135 \, (1-P_{3\sigma}) \qquad \beta \equiv \int_0^{t_{\alpha}} P(q_0|H_1) \, dq_0 = 0.5$

is equivalent to 50% of the outcomes (of alternative hypothesis) have 0 outside 3σ -error-bar.

likelihood function

Ονββ sensitivities

with energy information (E_i), sensitivities (50% >3 σ) of signal strength is independent of RoI, depend on B/ σ_E only. (σ_E : energy resolution of detector)

for L = Poisson only, sensitivities depend on RoI of choice suffer from "over-coverage" (= 3σ is not always allowed for discreteness)

counting analysis

counting analysis : smaller RoI \rightarrow smaller B \rightarrow but suffer eff. lost

energy information : solve "over-coverage" problem of counting at low B increase sensitivities at high B

Wilk and Wald

According to Wilk 1938, Walk 1943, at high statistic, and S away from boundary $P(q_0|H_0)$ and $P(q_0|H_1)$ could be approximated by:

$$\begin{split} P(q_0|H_0) &\approx \frac{1}{2} \delta(q_0) + \frac{1}{2} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{q_0}} e^{-q_0/2} & \chi^2 \text{-distribution} \\ P(q_0|H_1) &\approx (1 - \Phi(\sqrt{\Lambda})) \delta(q_0) \\ &\quad + \frac{1}{2} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{q_0}} e^{-(\sqrt{q_0} - \sqrt{\Lambda})^2/2} & \text{non-center } \chi^2 \text{-distribution} \end{split}$$

the non-center parameter Λ : q_0 of most probable (Asimov) data-set.

Approximation at large B

Large B and S required a lot of PC time to get sensitivities, Wilk's approximation match well with simulation.

 n_0 is a simulated number (as N, E_i) in hypothesis test

fix $\sigma_B/B \rightarrow$ no effect at low B due to statistic fluctuation dominant over σ_B

with $2\nu\beta\beta$

 $2\nu\beta\beta$ become a dominant background when flat background is small. negligible for $\Delta q_{\beta\beta} < 10$ keV and exposure < 1 ton-yr

2vBB background affect low-B large exposure experiment more.

$2\nu\beta\beta$ free

summary

- we example projected sensitivities of 0vββ by hypothesis test with profile likelihood ratio at both low statistics and high statistic region. and cross-check with other approximation method.
- example parameter space where Wilk's approximation is valid.
- effect of discreteness of Poisson still preserve at low B.
- more work on other systematic uncertainties:

 $G^{0\nu}$, g^4_A , $|M^{0\nu}|^2$, $2\nu\beta\beta$ spectum.

Thanks

test statistic

The question: what is $T^{0\nu}_{1/2}$ (or $S^{0\nu}_{obs}$) to define positive claim of $0\nu\beta\beta$?

- \rightarrow depend on $2\nu\beta\beta$ background \rightarrow exposure + energy resolution of detector.
- \rightarrow depend on flat background \rightarrow exposure.
- \rightarrow depend on uncertainties of backgrounds.
- → depend on uncertainties of $G^{0\nu}g^4_A|M^{0\nu}|^2$.
- \rightarrow depend on acceptance region (?- σ) and "power of test".
- \rightarrow depend on choice of "test statistic".

Test statistic : mapping from "experimental outcome" \rightarrow "real number" \rightarrow we need this or we can not compare two outcome with multiple values. Neyman-Pearson Lemma \rightarrow "likelihood ratio" optimized for hypothesis separation.

 \rightarrow "profile likelihood ratio" when nuisance parameters exist.

We adopted frequentist statistic in this report:

- probabilities of parameters (of interested or nuisance) are not used.
- uncertainties of parameters formulated from probabilities of measurements.
- C.I. is defined as "coverage" of measurement (outcome) \rightarrow Neyman construction.

over-coverage of counting

1-ton Ge vs. 5-ton Xe