## NvDEx Experiment

#### Hao Qiu Institute of Modern Physics, CAS



- Neutrinos oscillate ⇒ they have finite mass ⇒ beyond Standard Model
- Could be Majorana or Dirac fermions (could be their own anti-particle)
- Have "unnaturally" tiny mass
- $\Rightarrow$  Could be a key to new physics beyond Standard Model

#### $0\nu\beta\beta$ Decay



- Unstable nuclei may undergo ββ decay if single β-decay is energetically forbidden
- If  $0\nu\beta\beta$  decay is observed, it
  - will prove that v is a Majorana particle  $\Rightarrow$  beyond Standard Model
  - may explain the finite but tiny v masses, by see-saw mechanism with an extended Standard Model
  - will constrain absolute v mass, and v mass hierarchy
  - may explain matter-antimatter asymmetry in the universe, since it violates CP symmetry and lepton number conservation

## 0vββ Decay Experiment Sensitivity



- Inverted hierarchy:  $m_{\beta\beta} > 10$  meV, goal of next generation experiments
- Normal hierarchy:  $m_{\beta\beta} > 1$  meV, 1 order of magnitude lower than inverted hierarchy
- Both current oscillation experimental results and physics naturalness slightly prefer normal hierarchy

### Half Life & $m_{\beta\beta}$ sensitivity

$$rac{1}{T^{0
u}_{etaeta}} = G^{0
u} \cdot \left|M^{0
u}
ight|^2 \cdot \langle m_{etaeta}
angle^2$$

0 background case:  $T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \frac{MT}{n_{CL}}$ high background case:  $T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \sqrt{\frac{MT}{b \wedge F}}$ 



- Reducing b∆E is the key to use decay isotopes (funding) effectively and increase experiment sensitivity
- For the case of 0 background,  $m_{\beta\beta}$  sensitivity  $\propto (MT)^{-1/2}$
- For the case of high background,  $m_{\beta\beta}$  sensitivity  $\propto (MT)^{-1/4}$ 
  - 1-t for normal hierarchy
     10k t for inverted hierarchy

same background level

Hao Qiu – IMP, CAS

#### Background Level Needed -for a Cost-effective Experiment

"100kg-class" experiments:



- For ~0 background experiments,  $T_{1/2} \sim 10^{29} \text{ yr} \Rightarrow \sim \text{several 10 ton yr exposure}$
- ⇒ In order to use the isotopes (funding) efficiently, we need background level of ~< 0.1 ct / ton yr ROI ⇒ the goal set by U.S. NSAC</li>
- Most of current experiments are >= 1 order of magnitude away from this goal

#### NvDEx Concept



• High pressure <sup>82</sup>SeF<sub>6</sub> gas TPC, with direct read-out by topmetal CMOS sensors

D.R. Nygren, Y. Mei et al 2018 JINST 13 P03015

Hao Qiu – IMP, CAS

#### NvDEx Advantages



- NvDEx's advantages for low background
  - High Q value of <sup>82</sup>Se (2.996 MeV) above most natural radiation background
  - Distinguish signal and background with event topology by TPC
  - Better energy resolution without avalanche amplification (~1% FWHM)
  - CJPL deepest underground lab

#### NvDEx Advantages



- SeF<sub>6</sub> is electronegative. Amplification by electron avalanche is not possible with it.
- The combination of advantages from the high Q value of <sup>82</sup>Se and TPC's ability to see event topology, is only possible with low-noise direct charge read-out.
- Topmetal-S sensor, specifically for 0vββ detection, is made by Pixel Lab of CCNU.

#### $N_{\rm V}DEx-100$



- NvDEx-100 is being built, with 100kg  $SeF_6$  gas at 10 atm in the sensitive volume
- CDR finished, accepted for publication by NST

arXiv:2304.08362

Chinese version of CDR submitted to CJPL

#### **Topmetal-S Sensor**





#### $2mm \times 3mm$

- The key technology for  $N_V DEx$  to come true
- Noise ~<45e<sup>-</sup> expected, important to achieve ~1% FWHM energy resolution
- Two tapeouts have been conducted, the 3<sup>rd</sup> tapeout is being produced

#### Array of 19 Topmetal-S Sensors (1<sup>st</sup>)



- An array of 19 Topmetal-S sensors (1<sup>st</sup> tapeout) was tested with <sup>241</sup>Am α source
- Signals from the  $\alpha$  source observed, but the magnitude is only 5% of expected value
- The magnification in the CSA is not high enough, because the bias voltage cannot work stably when the magnification is increased

#### Electrical Test of Topmetal-S Sensors (2st)





- All sensors respond the signal source correctly
- The magnification issue in the CSA of the 1<sup>st</sup> version sensors is resolved
- An equivalent input noise <130e- has been achieved so far (NvDEx goal: 45e-)

#### Electrical Test of Topmetal-S Sensors (2st)



- The linearity and stability are acceptable
- Signals from the  $\alpha$  source being tested

#### Readout & DAQ



- Sensor pitch: 8mm
- Sampling rate: 0.5~20 kSps
- 256 Sensor array module: under design
- DAM module: functions evaluated
- DAQ system: the first prototype finished, software design ongoing
   Hao Qiu – IMP, CAS





#### **TPC Field Cage**







- 2.5cm thick Polyoxymethylene (POM) insulator + POM supporting structure + FPCB
- Finished with an initial design, a 30cm-diameter prototype is made and being tested

#### **Inner Copper Shielding**





- Low-radiation oxygen-free copper
- 12 cm thick
- Finished with manufacture

#### **Pressure Vessel**











- 316L alloy
- Maximum pressure: 15 atm
- Manufactured, to be assembled with inner copper shielding

#### **External Shielding**



- 20 cm thick of Pb to stop γ
- High density polyethylene to stop neutrons
  - between the Pb layer and pressure chamber
  - 30 cm thick outside Pb layer
- Finished with design

#### Gas System & Gas Safety



- SeF<sub>6</sub> is poisonous: < 0.05 ppm in environment  $\Rightarrow$  multi-layer safety measures
- A cold trap for SeF<sub>6</sub> storing
- An emergency tank for emergent SeF<sub>6</sub> releasing
- After SeF<sub>6</sub> is condensed and the system evacuated, a trace amount of residual gas is purged into a reactor containing potassium iodide (KI)
- Test with non-poisonous SF<sub>6</sub> for gas tightness before filling SeF<sub>6</sub> each time  $^{20}$

#### Gas System & Gas Safty



pre-cooler



condenser







SF<sub>6</sub> storage tank



vacuum pump

emergent release tank

- Most parts of the gas system have been manufactured
- Waiting to be assembled with the pressure chamber
- Will be tested with SF<sub>6</sub> for a long time and many operation cycles, before using SeF<sub>6</sub>

#### Airtight Clean Room



control room

- The entire experimental set-up will be placed in an airtight clean room
- During data taking, the airtight clean room will be kept airtight, and the whole experiment will be controlled remotely
- Sufficient potassium iodide (KI) reagent placed to absorb SeF<sub>6</sub> in case of leakage
- When accessing the experiment, SeF<sub>6</sub> will be condensed in isolated airtight rooms

#### Simulations



· Various simulations have been carried out

#### Background Estimations - γ

γ background from different sources without suppression using event topology

| Source   |                        | Background in ROI |                            |  |
|----------|------------------------|-------------------|----------------------------|--|
| Material | Subsystem              | evts/yr           | $10^{-5}$ evts/(keV kg yr) |  |
| Concrete | Experimental hall      | 0.004             | 0.12                       |  |
| Lead     | External shielding     | 0.003             | 0.09                       |  |
| HDPE     | External shielding     | 0.005             | 0.16                       |  |
| Steel    | Pressure vessel        | 0.026             | 0.86                       |  |
| Copper   | Inner copper shielding | 0.050             | 1.67                       |  |
| POM      | Field cage             | 0.330             | 10.99                      |  |
| Total    |                        | 0.42              | 13.9                       |  |

- Assuming the same natural radiation contaminations as NEXT, ~0.4 counts / year in ROI for 100kg gas, without suppression using event topology
- ~< 0.04 counts / year with suppression using event topology (most conservative estimation)</li>

#### **Background Estimations - Neutrons**



Neutrons can induce y in Cu, Pb etc  $\leftarrow$  major contribution

- Neutrons can also interact directly with Se and F in the gas
  - $n + {}^{82}Se \rightarrow {}^{83}Se \rightarrow {}^{83}Br + e + \overline{v}_{e} \rightarrow {}^{83}Kr + e + \overline{v}_{e}$
  - $n + {}^{19}F \rightarrow {}^{20}F \rightarrow {}^{20}Ne + e + \overline{\nu}_{e}$
- With HDPE blocks placed in and outside the Pb shielding, the neutron induced background will be reduced to 0.03 events/year before suppression with event arXiv:2307.12785 topology << y background

#### **Background Estimations - Cosmic-generated**

Table 4. Cosmogenic activation rate of various radio-isotopes in copper, as well as activities after exposure at sea level and cooling for certain time lengths.

| Isotope          | Q-value | Half-life            | Prod  | uction rate       | Activity      | Activity      |
|------------------|---------|----------------------|-------|-------------------|---------------|---------------|
|                  | (keV)   | (d)                  | (ato  | oms/kg/d)         | after 2yr     | after 1yr     |
|                  |         |                      | Calc. | Expt. [31]        | exposure      | cooling       |
|                  |         |                      |       |                   | $(\mu Bq/kg)$ | $(\mu Bq/kg)$ |
| <sup>46</sup> Sc | 2367    | 83.8                 | 3.1   | $2.18 \pm 0.74$   | 36            | 1.7           |
| $^{54}$ Mn       | 1377    | 312                  | 14.3  | $8.85 {\pm} 0.86$ | 133           | 59            |
| <sup>59</sup> Fe | 1565    | 44.5                 | 4.2   | $18.7 {\pm} 4.9$  | 49            | 0.2           |
| <sup>56</sup> Co | 4566    | 77.3                 | 8.7   | $9.5 \pm 1.2$     | 101           | 3.8           |
| <sup>57</sup> Co | 836     | 272                  | 32.5  | $74 \pm 17$       | 318 🔍         | 125           |
| <sup>58</sup> Co | 2307    | 70.9                 | 56.6  | $67.9 \pm 3.7$    | 655           | 18            |
| <sup>60</sup> Co | 2824    | $1.92 \times 10^{3}$ | 26.3  | 86.4±7.8          | 71            | 62            |

- <sup>56</sup>Co from Cu is the most important isotope
  - After exposure at Lanzhou, ~323 µBq/Kg, background in ROI ~3700 evts / yr
  - Need ~3 years to cool down underground to be below γ background in ROI
- Other isotopes with long enough half life are with Q value < Q of <sup>82</sup>Se

#### Background Estimations – Others & Pile-up



- Other background sources are estimated to be neglectable
  - Natural radioactive  $\alpha$  &  $\beta$ , Radon, cosmic  $\mu$ ,  $\nu$ ,  $2\nu\beta\beta$
- Due to slow drift velocity of ions, pile-up backgrounds could be an issue
  - The drift time for 160 cm maximum drift length is ~7s
  - Estimated assuming events can be separated if they are 10cm\*10cm\*10cm away
  - For natural SeF<sub>6</sub>,  $2\nu\beta\beta + 2\nu\beta\beta$ : 0.06 evts / yr ROI <  $\gamma$  background
  - For <sup>82</sup>SeF<sub>6</sub>,  $2\nu\beta\beta + 2\nu\beta\beta$ : 8.1 evts / yr ROI >  $\gamma$  background
  - Can be removed by adding scintillation light read-out with silicon PM at the HV end

#### **Background Estimations**

#### "100kg-class" experiments:



- Natural radiation  $\gamma$  is the dominant background source for NvDEx
- In total, ~<0.05 counts / year in ROI  $\Rightarrow$  ~<1 cts / (ton yr ROI)
- Very good potential for a future multi-ton scale experiment reaching for normal hierarchy  $m_{\beta\beta}$  region

#### **Sensitivity Estimation**



- Within 5 years the background in ROI ~< 0.25 counts, basically 0 background</li>
- $T_{1/2} > 4 \times 10^{25}$  yr at 90% CL, with 100 kg natural SeF<sub>6</sub> (only 3.7kg <sup>82</sup>Se) 5 yrs
- $T_{1/2} > 4 \times 10^{26}$  yr at 90% CL, with 100 kg  ${}^{82}$ SeF<sub>6</sub> 5 yrs

#### **Future Plan**

- 2024:
  - Demonstrate topmetal sensor array TPC readout
  - TDR
  - Get approval to enter CJPL
- 2025:
  - Assemble the whole system
- 2026:
  - Begin data-taking, get 1<sup>st</sup> physics results

#### **NvDEx Collaboration**



- 1<sup>st</sup> NvDEx workshop in 2019
- >30 collaborators from 9 institutes now

Welcome to join

#### Summary

- NvDEx concept combines advantages from the high Q value of <sup>82</sup>Se and TPC's ability to see event topology, using noval topmetal sensor technology
- NvDEx-100 is being built, plan to be assembled around 2025
- 2 tapeouts of Topmetal-S sensors conducted, 3<sup>rd</sup> being produced
- Very low background level expected: ~<1 ct / (ton yr ROI)
  - Good potential for multi-ton scale experiment reaching for normal hierarchy  $m_{\beta\beta}$  region
- ~  $4 \times 10^{25/26}$  yr sensitivity expected, with 100kg natural SeF<sub>6</sub> / <sup>82</sup>SeF<sub>6</sub> gas

# Thanks 🙂 Welcome to join



#### **Budgets**

| 子系统                 | 所需经费(万元) |
|---------------------|----------|
| Topmetal-S 芯片       | 350      |
| 读出电子学及数据获取系统        | 120      |
| TPC 场笼              | 74       |
| 高压气腔及铜屏蔽体           | 61       |
| 气路系统                | 44       |
| 外屏蔽体                | 260      |
| 气密洁净间               | 320      |
| SeF <sub>6</sub> 气体 | 350      |
| 总计                  | 1579     |

表 7. 各子系统未来完成研制所需经费

| 项目名称                                   | 总经费    | 结余经费  |
|----------------------------------------|--------|-------|
|                                        | (万元)   | (万元)  |
| 国家重点研发计划 2022YFA1604703(支持 NvDEx 实验部分) | 441.6  | 428.4 |
| 国家重点研发计划青年项目 2021YFA1601300(直接经费)      | 395    | 322   |
| 中国科学院从0到1原始创新计划ZDBS-LY-SLH014          | 240    | 41.5  |
| 中国科学院国际合作伙伴计划 GJHZ2067                 | 100    | 4.9   |
| 国家自然科学基金委青年科学基金项目 12105110             | 30     | 20.4  |
|                                        | 1206.6 | 817.2 |