JUNO upgrade for 0vßß search

Gaosong Li (IHEP) On behalf of JUNO Oct 31, 2023, Chengdu Symposium on Frontiers of Underground Physics

記門中激系質験 iangmen Underground Neutrino Observatory

Neutrino oscillation

The Nobel Prize in Physics 2015

Photo: A. Mahmoud Takaaki Kajita Prize share: 1/2 Photo: A. Mahmoud Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Neutrino mass generation mechanism

- Neutrino oscillation experiments demonstrate neutrinos have non-zero mass
- Neutrino mass is significantly smaller than other fermions
- Majorana nature of neutrinos allows a natural way to explain the small neutrino mass by seesaw mechanism

The search for $0\nu\beta\beta$ is the most sensitive probe of Majorana nature of neutrinos.

Double beta decay

- Double beta decay is a second order process
- Only observable if first order beta decay is energetically forbidden

Candidate with Q>2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

Neutrinoless double beta decay $(0\nu\beta\beta)$

$2\nu\beta\beta$ decay

Conventional process

 $0\nu\beta\beta$ has huge physics implications:

- Majorana neutrino
- Lepton number violation
- Absolute neutrino mass scale

- 2ν VS 0ν spectrum: continuuum vs peak
- Good energy resolution required to separate 0v from 2v

Experimental sensitivity

$$t_{1/2} \sim \sqrt{\frac{MT}{\mathbf{B} \times \Delta E}}$$

- Low background level
 - low radioactivity detector
 - powerful background rejectior
- Good energy resolution
- Large detector mass

Experimental results

 $|m_{\beta\beta}| \equiv \left| m_1 \cos^2 \theta_{13} \cos^2 \theta_{12} e^{i\rho} + m_2 \cos^2 \theta_{13} \sin^2 \theta_{12} + m_3 \sin^2 \theta_{13} e^{i\sigma} \right|$

Towards |m_{ββ}|~meV

• Precise determination of the lightest neutrino mass

 $m_1 \in [0.7,8]~{\rm meV}$

 Constrain (m₁, ρ, σ) to a very small parameter space

JUNO Calibration house Top Tracker (TT) 20 kton multi-purpose neutrino detector with the primary goal Water Connecting bar Determine Neutrino mass ordering Acrylic Vessel Precision measurement of Central Detector (CD) PMTs Acrylic Node neutrino oscillation Veto PMTs Stainless Steel (SS) structure

	Precision by 2030	Expt.
Δm^2_{21}	0.3%	JUNO
$\Delta m^2_{31}/\Delta m^2_{32}$	0.2%	JUNO
$\sin^2 \theta_{12}$	0.5%	JUNO
$\sin^2 2\theta_{13}$	2.8%	Daya Bay

CPC 46 (2022) 12, 123001

Impact of JUNO's physics outcome on 0vββ searches, by 2030

- Precision measurement \rightarrow reduce the uncertainty of m_{BB}
- Determine neutrino mass ordering @ 6 years:

 $\sim 3\sigma$ (reactor), $\sim 4\sigma$ (reactor + atmospheric)

JUNO-0 $\nu\beta\beta$ upgrade

- JUNO offers an unique opportunity to search for 0vββ
 - 20 kton LS → 100-ton scale isotope loading (e.g., Tellurium, Xenon)
 - Low background
 - Energy resolution < 3% @ 1 MeV →
 2.4x better than KamLAND-Zen

Concept of the experiment

Searching for 0vββ decays in JUNO, Snowmass2021 LOI Snowmass2021 Topical group report for NF05, arXiv 2209.03340

JUNO underground lab

- 300,000 m³ total excavation
- Two access tunnels
- 120,000 m³ experimental hall (EH) space, among one of the largest underground EHs

 ✓ 1800 mwe vertical overburden
 ✓ 45.6 m x 45.6 m x 71.9 m cylindrical pit with an arched top
 ✓ Class-100,000 cleanroom
 ✓ Rn level kept around ~100 Bq/m³

Background budget

- Full background evaluation
 - ¹³⁶Xe loading as an example in 2016
 - ¹³⁰Te loading estimate ongoing
- Advantage of large LS based detector → negligible external background
- Background dominated by
 - ⁸B solar *v*-e scattering
 - 2νββ
 - Cosmogenic isotope
 - Internal LS radiopurity

Table 5. Summary of the projected backgrounds in the $0\nu\beta\beta$ ROI. For light cosmogenic isotopes, the values are from GEANT4 MC, while for FLUKA MC the total residual background would increase $0.07/\text{ROI}/(\text{ton}^{-136}\text{Xe})/\text{yr}.$

summary of backgrounds in 0vββ ROI [ROI-(ton ¹³⁶ Xe)·yr] ⁻¹ $2\nu\beta\beta$ 0.2 ⁸ B solar ν 0.7 cosmogenic background ¹⁰ C 0.053 ⁶ He 0.063 ⁸ Li 0.016 ¹² B 3.8×10^{-4} others (Z ≤ 6) 0.01 ¹³⁷ Xe 0.07 internal LS radio-purity (10^{-17} g/g) ²¹⁴ Bi (²³⁸ U chain) 0.003 ²⁰⁸ T1 (²³² Th chain) - 2 ¹²² Bi (²³² Th chain) 0.03 external contamination 2 ²¹⁴ Bi (Rn daughter) ²¹⁴ Bi (Rn daughter) 0.2 total 1.35				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	summary of backgrounds	in 0vββ ROI		
$\begin{array}{cccc} 2\nu\beta\beta & 0.2 \\ {}^{8}\text{B solar }\nu & 0.7 \\ \hline & & & & & & & & & & & & \\ \hline & & & &$	[ROI (ton ¹³⁶ Xe)·	$yr]^{-1}$		
$\begin{array}{ccc} {}^{8}\mathrm{B}\;\mathrm{solar}\;\nu & 0.7\\ \hline & \mathrm{cosmogenic\;background}\\ \hline {}^{10}\mathrm{C} & 0.053\\ {}^{6}\mathrm{He} & 0.063\\ {}^{8}\mathrm{Li} & 0.016\\ {}^{12}\mathrm{B} & 3.8 \times 10^{-4}\\ \mathrm{others}\;(Z\leqslant 6) & 0.01\\ {}^{137}\mathrm{Xe} & 0.07\\ \hline & \mathrm{internal\;LS\;radio-purity\;(10^{-17}\;\mathrm{g/g})}\\ \hline {}^{214}\mathrm{Bi\;(^{238}\mathrm{U\;chain})} & 0.003\\ {}^{208}\mathrm{Tl\;(^{232}\mathrm{Th\;chain})} &\\ {}^{212}\mathrm{Bi\;(^{232}\mathrm{Th\;chain})} & 0.03\\ \hline & \mathrm{external\;contamination}\\ \hline {}^{214}\mathrm{Bi\;(\mathrm{Rn\;daughter})} & 0.2\\ \hline & \mathrm{total} & 1.35\\ \end{array}$	2νββ	0.2		
$\begin{tabular}{ c c c c c } \hline cosmogenic background & & & & & & & & & & & & & & & & & & &$	${}^{8}B$ solar ν	0.7		
$\begin{tabular}{ c c c c c } \hline cosmogenic background & & & & & & & & & & & & & & & & & & &$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cosmogenic backg	round		
	¹⁰ C	0.053		
	$^{6}\mathrm{He}$	0.063		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁸ Li	0.016		
others $(Z \leq 6)$ 0.01 ^{137}Xe 0.07 internal LS radio-purity (10^{-17} g/g) $^{214}Bi (^{238}U \text{ chain})$ 0.003 $^{208}Tl (^{232}Th \text{ chain})$ $^{212}Bi (^{232}Th \text{ chain})$ $^{212}Bi (^{232}Th \text{ chain})$ 0.03 external contamination 0.02 total 1.35	^{12}B	3.8×10^{-4}		
$\begin{array}{cccc} & 0.07 \\ & & \\$	others $(Z \leq 6)$	0.01		
internal LS radio-purity (10^{-17} g/g) 214 Bi (238 U chain) 0.003 208 Tl (232 Th chain) - 212 Bi (232 Th chain) 0.03 external contamination 214 Bi (Rn daughter) 0.2 0.2 total 1.35	¹³⁷ Xe	0.07		
internal LS radio-purity (10^{-17} g/g) 214 Bi (238 U chain) 0.003 208 Tl (232 Th chain) — 212 Bi (232 Th chain) 0.03 external contamination 214 Bi (Rn daughter) 0.2 1.35				
$\begin{array}{cccc} ^{214}{\rm Bi} \left(^{238}{\rm U} \ {\rm chain} \right) & 0.003 \\ ^{208}{\rm Tl} \left(^{232}{\rm Th} \ {\rm chain} \right) & \\ ^{212}{\rm Bi} \left(^{232}{\rm Th} \ {\rm chain} \right) & 0.03 \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	internal LS radio-purity (10^{-17} g/g)			
$\begin{array}{c} ^{208}\mathrm{Tl}\ (^{232}\mathrm{Th\ chain}) &\\ ^{212}\mathrm{Bi}\ (^{232}\mathrm{Th\ chain}) & 0.03\\ \\ \hline \\ external\ contamination\\ \hline \\ ^{214}\mathrm{Bi}\ (\mathrm{Rn\ daughter}) & 0.2\\ \\ & \mathrm{total} & 1.35 \end{array}$	214 Bi (238 U chain)	0.003		
²¹² Bi (²³² Th chain) 0.03 external contamination ²¹⁴ Bi (Rn daughter) 0.2 total 1.35	208 Tl (232 Th chain)			
external contamination ²¹⁴ Bi (Rn daughter) 0.2 total 1.35	²¹² Bi (²³² Th chain)	0.03		
external contamination ²¹⁴ Bi (Rn daughter) 0.2 total 1.35				
²¹⁴ Bi (Rn daughter) 0.2 total 1.35	external contamination			
total 1.35	²¹⁴ Bi (Rn daughter)	0.2		
total 1.35				
	total	1.35		
10			12	

CPC 41 (2017) 053001

Internal LS radio-inpurity

- Four purification plants to remove radio-impurities in LS
 - Alumina column, distillation, water extraction, gas stripping
- Strict control measures for LS pipes/plants to limit contaminations during filling
 - Detailed cleaning protocols
 - Limit radon exposure
- Rejection in the analysis
 - β - α cascade
 - Pulse shape discrimination for different particle type

Very small bkg contribution after rejection

	²³⁸ U (g/g)	²³² Th (g/g)
KamLAND (2002 osci. RPL)	(3.5±0.5) x 10 ⁻¹⁸	(5.2±0.8) x 10 ⁻¹⁷
KamLAND (2015 solar)	(5±0.2) x 10 ^{−18}	(1.3±0.1) x 10 ⁻¹⁷
KamLAND-Zen (2013 PRL)	(1.3±0.2) x 10 ⁻¹⁶	(1.8±0.1) x 10 ⁻¹⁵
KamLAND-Zen (2022)	(1.5±0.4) x 10 ⁻¹⁷	(3.0±0.4) x 10 ⁻¹⁶
SNO+ (2020)	10 ⁻¹⁵	10 ⁻¹⁶
Borexino (w/o water extraction)	(5.3±0.5) x 10 ⁻¹⁸	(3.8±0.8) x 10 ⁻¹⁸
Borexino (w/i water extraction)	< 9.4 x 10 ⁻²⁰	< 5.7 x 10 ⁻¹⁹
JUNO (target)	10 ⁻¹⁷	10 ⁻¹⁷

References: Phys. Rev. C. 85.045504, Phys. Rev. C 92, 055808 (2015), Phys. Rev. Lett.90.021802, Phys. Rev. Lett. 117.082503, Phys. Rev. C.84.035804, PRL 110, 062502 (2013), Eur. Phys. J. C (2020) 80:41, talks at NEUTRINO2020, Phys. Rev. D 89, 112007 (2014)

Dediesetive impurities	Background Index unit: ROI ⁻¹ (ton ¹³⁶ Xe) ⁻¹ yr ⁻¹		
Radioactive impurities	No rejection	After rejection	
²¹⁴ Bi- ²¹⁴ Po (²³⁸ U series)	8.3	0.003 (0.03% residual)	
²¹² Bi- ²¹² Po (²³² Th series)	1.25	0.03 (2.5% residual)	
²²² Rn external leakage		0.2 (0.03% residual)	

Background control for JUNO detector

- Before assembly
 - Massive material screening
- Low bkg assay approaches
 - HPGe, NAA, ICPMS
 - Rn detector
- Develop pre-treatment methods for different materials

	sens.	Note	
HPGe	10 ppb – 10 ppt	sample ~1-10 kg	
NAA	0.1-1 ppt	sample ~1 g	
ICP-MS	~< 0.1 ppt	sample ~1 g	
Do occur facility	<10 uBq/m ³ -N ₂	w/i enrichment	
RII assay lacility	~50 uBq/m ³ -H ₂ O	w/i enrichment	
1 ppt=10 ⁻¹² , 1 ppb=10 ⁻⁹		JHEP 11 (2021) 102	

Background control for JUNO detector

- During assembly
 - dust and radon control
- Dust/contamination control
 - Clean-room assembly environment
 - Surface cleaning procedures
- Radon (& progenies) control
 - Improve underground ventilation
 - Control air exposure to detector/pipe surfaces

Cosmogenic background on ¹²C

- JUNO: 650 m rock overburden
- Long-lived μ -spallation isotope could become background

Table A9. The estimated rates for cosmogenic isotopes in JUNO LS by FLUKA simulation, in which the oxygen isotopes are neglected. The decay modes and Q value are from TUNL Nuclear Data Group [475].

Isotopes	Q (MeV)	$T_{1/2}$	Rate (per day)
³ H	0.0186 (<i>β</i> ⁻)	12.31 year	1.14×10^{4}
⁶ He	3.508 (β ⁻)	0.807 s	544
⁷ Be	$Q_{EC} = 0.862 \ (10.4\% \ \gamma, E_{\gamma} = 0.478)$	53.22 d	5438
⁸ He	10.66 ($\beta^-\gamma$: 84%), 8.63 (β^-n : 16%)	0.119 s	11
⁸ Li	16.0 (<i>β</i> ⁻)	0.839 s	938
°В	16.6 (<i>β</i> ⁺)	0.770 s	225
⁹ Li	13.6 (β ⁻ : 49%), 11.94 (β ⁻ n: 51%)	0.178 s	94
°C	15.47 ($\beta^+ p$: 61.6%, $\beta^+ \alpha$: 38.4%)	0.126 s	31
¹⁰ Be	0.556 (β ⁻)	1.51e6 year	1419
¹⁰ C	2.626 ($\beta^+\gamma$)	19.29 s	482
¹¹ Li	20.55 (β ⁻ n : 83%, β ⁻ $2n$: 4.1%)	0.00875 s	0.06
¹¹ Be	11.51 ($\beta^-\gamma$: 96.9%), 2.85 ($\beta^-\alpha$: 3.1%)	13.76 s	24
¹¹ C	0.960 (β ⁺)	20.36 min	$1.62 imes 10^4$
¹² Be	11.708 ($\beta^-\gamma$, β^-n : 0.5%)	0.0215 s	0.45
¹² B	13.37 (β ⁻ γ)	0.0202 s	966
¹² N	16.316 (β ⁺ γ)	0.0110 s	17
¹³ B	13.437 (β ⁻ γ)	0.0174 s	12
¹³ N	1.198 (β ⁺)	9.965 min	19
¹⁴ B	20.644 ($\beta^-\gamma$, β^-n : 6.1%)	0.0126 s	0.021
¹⁴ C	0.156 (β ⁻)	5730 year	132
¹⁵ C	9.772 (β ⁻)	2.449 s	0.6
¹⁶ C	8.010 (β ⁻ n: 99%)	0.747 s	0.012
¹⁶ N	10.42 ($\beta^{-}\gamma$)	7.130 s	13
¹⁷ N	8.680 (β ⁻ γ: 5%), 4.536 (β ⁻ n: 95%)	4.173 s	0.42
¹⁸ N	13.896 (β ⁻ γ: 93%), 5.851 (β ⁻ n: 7%)	0.620 s	0.009
Neutron			155 000
			10

Background Veto

- Excellent μ tagging and tracking capability
- Dedicated veto strategies for different types of muons
- Major isotopes can be efficiently rejected

Refs: arXiv:2006.11760, Chin. Phys. C 45 (2021) 023004 arXiv:1610.07143, Chin. Phys. C 41 (2017) 053001

Cosmogenic Isotopes	Background Index unit: ROI-1 (ton 136Xe)-1 yr-1No vetow/ veto	
¹⁰ C	16.4	0.053
⁶ He	4.9	0.063
⁸ Li	1.5	0.016
¹² B	1.9	3.8e-4
¹³⁷ Xe	2.3	0.07
Xe spallation **		2.5
Others (Z≤6)	0.51	0.01
Total		2.7

** Long-lived muon-induced xenon spallation products reported by KamLAND-Zen recently is taken into account

Cosmogenic background on Te/Xe

- Long-lived, high-Q isotopes
- Activation above the ground
 - Minimize exposure
 - Underground cooling down
- In-situ activation underground
 - Rate/spectra evaluation with Geant4/FLUKA ongoing
 - Develop veto strategy
- Guide development of transfer and storage strategy for Te raw materials

Isotope	$T_{1/2}$	Q-value	Decay mode (BR)
-	[d]	[MeV]	(%)
22 Na	950.6	2.84	EC, β^+
^{26}Al	2.62E + 8	4.00	β^+
$^{42}K~(^{42}Ar)$	0.51 (1.20E+4)	3.53	β^{-}
$^{44}Sc~(^{44}Ti)$	0.17(2.16E+4)	3.65	EC, β^+
^{46}Sc	83.79	2.37	β^{-}
$^{56}\mathrm{Co}$	77.2	4.57	EC, β^+
58 Co	70.9	2.31	EC, β^+
60 Co (60 Fe)	1925.27 (5.48E+8)	2.82	β^{-}
68 Ga (68 Ge)	4.70E-2 (271)	2.92	EC, β^+
82 Rb (82 Sr)	8.75E-4(25.35)	4.40	EC, β^+
⁸⁴ Rb	32.8	2.69	EC, β^+ (96.1)
88 Y (88 Zr)	106.63 (83.4)	3.62	EC, β^+
^{90}Y (^{90}Sr)	2.67 (1.05E+4)	2.28	β^{-}
102 Rh (102m Rh)	207.3	2.32	EC, β^{+} (78)
$^{102m}\mathrm{Rh}$	1366.77	2.46	EC(99.77)
106 Rh (106 Ru)	3.47E-4 (371.8)	3.54	β^{-}
$^{110m}\mathrm{Ag}$	249.83	3.01	β^{-} (98.67)
110 Ag (110m Ag)	2.85 E-4	2.89	β^{-} (99.70)
^{124}Sb	60.2	2.90	β^{-}
$^{126m}Sb~(^{126}Sn)$	0.01 (8.40E+7)	3.69	β^{-} (86)
126 Sb (126m Sb)	12.35(0.01)	3.67	β^{-}

Astropart. Phys. 61 (2015) 62-71

B8 solar neutrino

- ⁸B solar v-e scattering events has special directionality w.r.t the sun
- Directional Cerenkov light in JUNO LS detector helps to disentangle 0vββ decay and ⁸B solar v-e
 - Higher energy ROI
 - Higher Cerenkov fraction
 - Ongoing work. Expectation: a factor of 2 suppression

Borexino Collaboration,

Phys. Rev. Lett. 128 (2022) 091803

TeLS development

- Critical R&D: Te loading
- Desired features for Te molecule
 - High Te mass fraction
 - Easy and cost effective synthetic method
- Strategy
 - Try as many compounds
 - Quick screening criteria
 - Solubility in LAB
 - Colorless or white
 - Light yield measurement
 - Iteration and optimization

TeLS development

Promising one-step synthetic method, capability of Te loading in LAB: > 3%

- Good stability, transparency and solubility of Te-compounds
- Quick, convenient and applicable for most diols
- Current characteristics w/ 0.6% Te-loading
 - Good UV-Vis spectra for Te-LAB
 - NO visible difference (Δ_{ABS} <0.002 for λ >370 nm) compared to the purified LAB (A.L. > 20m)
 - NO degradation after 6 months
 - Light yield to-be-improved: 60%~70% w.r.t un-loaded LS

0.6% Te-LAB

Sensitivity

* Numbers are quoted from results shown in Neutrino2022 Conf. and the North America – Europe workshop on future $0\nu\beta\beta$ experiments in 2021.

Summary

- Searching for $0\nu\beta\beta$ decay is the most sensitive to probe the nature of neutrino mass and absolute neutrino masses
- Liquid scintillator is a competitive technology to go beyond 10²⁸ yrs of $T_{1/2}^{0\nu\beta\beta}$
- By 2030, the current LS experiments (KamLAND, SNO+) may reach 10²⁷ yrs, next generation projects (LEGEND, nEXO, CUPID) may start running
- JUNO has the potential to explore the $|m_{\beta\beta}|{\sim}meV$ region w/ >100 tons of $0\nu\beta\beta$ isotope
 - Clear route for technologies R&D
 - By 2025, resolve the Te-loading technique, background control/suppression strategy
 - By 2030, design & build Te loading and purification systems

Backup