PandaX Experiment: Double Weak Decays

2023-11-01

On behalf of PandaX collaboration Shanghai Jiao Tong University, China

Symposium on Frontiers of Underground Physics November 2023 Chengdu, China

Neutrinos are Dirac or Majorana?

Double Beta Decay ($2\nu\beta\beta$)

Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

Majorana neutrino may be an important link in connecting to matter-antimatter asymmetry in our universe

$0\nu\beta\beta$ probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation
- Measures effective Majorana mass: relate $0\nu\beta\beta$ to the neutrino oscillation physics

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$
Phase space factor
Nuclear matrix element
Effective Majorana
neutrino mass:
$$|\langle m_{\beta\beta} \rangle| = \left|\sum_{i=1}^3 U_{ei}^2 m_i\right|$$

$2\nu\beta\beta$ probes the new physics

- Determination of Nuclear Matrix Elements (NME) of $2\nu\beta\beta$
- $0\nu\beta\beta$ half-life calculation
- New physics search with $2\nu\beta\beta$ spectrum

Phys.Rev.Lett. 122 (2019) 19, 192501

Phys.Rev.Lett. 125 (2020) 17, 171801

Shaobo Wang, PandaX

Overview of PandaX

Dark matter WIMP Searches

$2\nu\beta\beta$ and $0\nu\beta\beta$ Research

PandaX-I: 120kg LXe (2009 – 2014)

PandaX-II: 500kg LXe (2014 – 2019)

PandaX-4T: 3.7T LXe

PandaX-xT (fut

Liquide natural Xe (8.9% ¹³⁶Xe)

PandaX-III: HPXe 100 kg scale (R&D for the future)

High pressure Xe (90% ¹³⁶Xe)

Dual-phase xenon time projection chamber (TPC)

Detector capability:

- 3D reconstruction and fiducialization (self-shielding) ER/NR PID
- Single-Site (SS) and Multi-Site (MS) discrimination
- Calorimeter from sub keV few MeV

Multiple physics in a wide energy range

	Sub-keV	1 keV	10 keV	100 ke	V	1 MeV	10 MeV
Xe-136 (~9%)					2νββ †	/ 0νββ	
Xe-134 (~10%)				2	2νββ / 0י	vββ	
Xe-124 (~0.1%)			2vE	ECEC			
Xe all isotopes	⁸ B solar ν and light DM	WIMP and ot models	her DM	olar pp v			
see (Lin's talk				this talk		
10/31/2023			Shaobo Wang, Pand	aX			7

$0\nu\beta\beta$ search with PandaX-II

- PandaX-II: 580 kg natural xenon, ~ 50 kg ¹³⁶Xe, 403.1 days' dark matter data
- ¹³⁶Xe half-life limit 2.4×10^{23} yr at 90% CL
- First $0\nu\beta\beta$ result with dual phase natural xenon detector (dark matter experiment)
- To verify the feasibility of $0\nu\beta\beta$ search
- Challenges:

PandaX-4T experiment

- Third generation of the PandaX experiments located at CJPL-II
- Dual-phase Xe TPC: 1.2 m (D) ×1.2 m (H)
- Sensitive volume: 3.7 ton LXe
- Total volume: 5.6 ton LXe
- 3-inch PMTs: 169 top / 199 bottom
- Water shielding: 10 m (D) ×13 m (H)
- Data taking:
 - Commissioning Run0 : ~95 days
 - Physics Run1: ~164 days

15 institutions and ~80 members

PandaX-4T @ CJPL-II B2

PandaX-4T: Extending DM detector response to MeV range

- PMT bases suffer serious saturation for MeV range events
- Match the rising slope of the saturated to the non-saturated templates in the same events → True charge collected
- For events in the energy range of 1 to 3 MeV, the average correction factor is \sim 3.0 for the top PMT array
- MeV gamma events are mostly multiple-scattering events; while signals $(2\nu\beta\beta$ and $0\nu\beta\beta$) are mostly single site (SS)

Position reconstruction improvement with desaturation

- Position reconstruction based on PAF (photon acceptance function) methods developed in DM analysis
- Reconstruction at MeV energy range is significantly improved with desaturation
- Removed the band structure in R² distribution

Segmented FV and simultaneous

- Material components are grouped into Top, Bottom and Side categories, each with ⁶⁰Co, ⁴⁰K, ²³⁸U and ²³²Th.
- FV is optimized based on both background level and position reconstruction non-linearity, then segmented into four regions.
- Binned Poisson likelihood fitting on SS energy spectrum is performed simultaneously in four regions.
- Outer regions are used to check material background model, and data-MC is consistent at 1% level.

т2

136 Xe 2 $\nu\beta\beta$ half-life measurement

- ¹³⁶Xe $2\nu\beta\beta$ half-life measured by PandaX-4T Run0: 2.27 ± 0.03(stat.) ± 0.10(syst.) × 10²¹ year
- Comparable precision with leading results
- First such measurement from a dark matter detector with natural xenon
- 440 keV 2800 keV range is the widest ROI
- The first step for $0\nu\beta\beta$ and the other new physics
- *"in-situ"* material background fitting results compatible and more precise than HPGe assay

Shaobo Wang, PandaX

Material, "Side" category

Research 2022 (2022) 9798721

10/31/2023

¹³⁶Xe $0\nu\beta\beta$ search in PandaX-4T

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)			
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³			
PandaX-4T-Run0	~10	~2%	~650	94.9 days	> 10 ²⁴			

 Commissioning Run0 + Physics Run1 analysis ongoing

 Improvement of the incoming Run2:

- Better energy resolution and linearity
- Better SS/MS discrimination

¹²⁴Xe 2vECEC half-life measurement

$(A,Z) + 2e^- \to (A,Z-2) + (2\nu_e)$

Physical Review C 106, 024328 (2022)

 Background time evolution is modeled and added to likelihood fitting

- Use commissioning Run0 open data to develop the method
- ¹²⁴Xe abundance measured as (0.100±0.001)%, larger than the natural abundance by ~5%

Energy spectrum + time evolution likelihood fit

- Two fits were performed on Run0 open data for consistency check:
 - Unbinned 2-dimentional fit on parameter space of (energy, time)
 - Binned simultaneous fit on energy + time
- Fitting results are more precise compared to the fit on energy spectrum only
- Commissioning Run0 + Physics Run1 blind analysis on-going

PandaX-xT

- 2.7 meters in diameter and height
- Total volume of 47-ton natural xenon
- Active xenon mass of 43-ton
- Upgradable based on the xenon amount in possession

Sensitivity to $0\nu\beta\beta$ in PandaX-xT

Assumptions:

- 1% σ/E, Rol within 50 keV of Q value, two background assumptions
- 10 years × 8.4 ton FV (natural xenon, with 8.9% ¹³⁶Xe)
- 3σ discovery sensitivity to $m_{\beta\beta}$: 13-56 meV baseline, 9-39 meV ideal

	Baseline (1/tonne/year)	Ideal (1/tonne/yea				
Photosensors	1.4×10 ⁻²	2.8×10^{-3}				
Copper vessel	3.2×10 ⁻²	6.3×10 ⁻³				
²²² Rn	4.5×10^{-2}	ā				
¹³⁶ Xe DBD	5.2×10 ⁻⁴	5.2×10 ⁻⁴				
¹³⁷ Xe	8.7×10 ⁻⁴	8.7×10^{-4}				
Solar ⁸ B v	1.4×10^{-2}	1.4×10^{-2}				
Total	1.1×10 ⁻¹	2.4×10^{-2}				

R&D towards a tracking calorimeter (PandaX-III)

- PandaX-III: 10 bar Xe-(1%)TMA (trimethylamine), ~100 kg enriched ¹³⁶Xe (90%)
- TPC : Single-end charge readout on the upper side, the cathode on the bottom
- 52 20X20 cm² Micromegas for charge readout
- Readout: 2 series of strips (x, y) of 3 mm
- Energy resolution: 3% FWHM expected at Q value of ¹³⁶Xe 0vββ
- Projection sensitivity: ~10²⁶ yr with five years live time

Micromegas detector

Shaobo Wang, PandaX

100 kg-scale demonstrator

Summary

- PandaX-4T has extended the energy range from keV to MeV with dedicated analysis pipeline and calibration campaign, and therefore extended the physics reach from dark matter to double weak decays
- ¹³⁶Xe $2\nu\beta\beta$ half-life is precisely measured for the first time by a natural xenon detector, with much lower analysis threshold and robust background control, demonstrating the physics potential of large liquid xenon TPC on multiple fronts
- On-going analysis of double-weak decays: ¹²⁴Xe 2νECEC, ¹³⁴Xe 2νββ / 0νββ, ¹³⁶Xe 0νββ, etc
- PandaX-xT with active xenon mass of 43 tonnes is under R&D
- R&D work towards a future tracking calorimeter: 100-kg scale demonstrator in progress

Improvement on the Energy Linearity Response

- PMT waveform saturation is studied by independent bench tests
- Desaturation algorithm is checked and verified

Pluse Generator

		18 - 19 A. A.	613	1.52	计扩展	1 A			i.			. S. 1			÷		1.00	1.18	1.1			
PandaX Project Timeline	2022	2023 20	024 2	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	
Operation of PandaX-4T, and R&D for the upgrade																						
Project Phase-I: construct and operate PandaX-xT on the basis of PandaX-4T; procure xenon by stages and upgrade detector along the way till 43-ton target, and keep >50% of experimental live time																						
Project Phase-II: with isotopically separated xenon (versatile configurations)																						