

The implications of different nuclear matrix element calculations in neutrinoless double beta decay experiments

Jing-Yu Zhu (朱景宇)

Institute of Modern Physics, Chinese Academy of Sciences

Based on the work with Fang, Li and Zhang, arXiv:2404.12316

10 May 2024

3rd Conference on frontiers of underground and space particle physics and cosmophysics

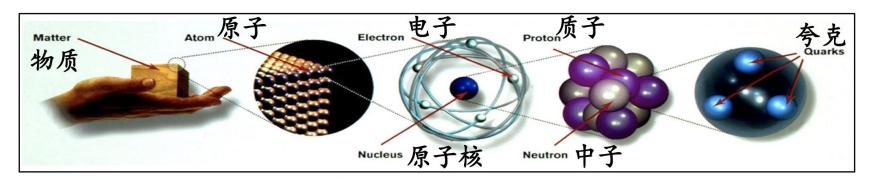
Outline

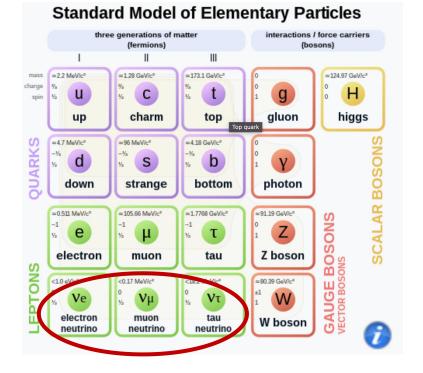
> Brief background

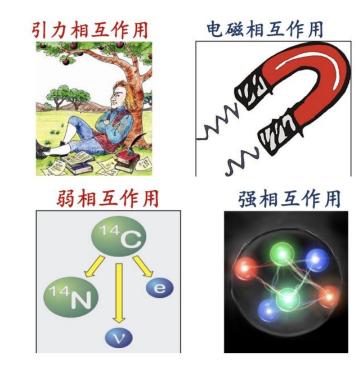
> Theoretical framework

 $0v2\beta$ process in minimal Type-I seesaw

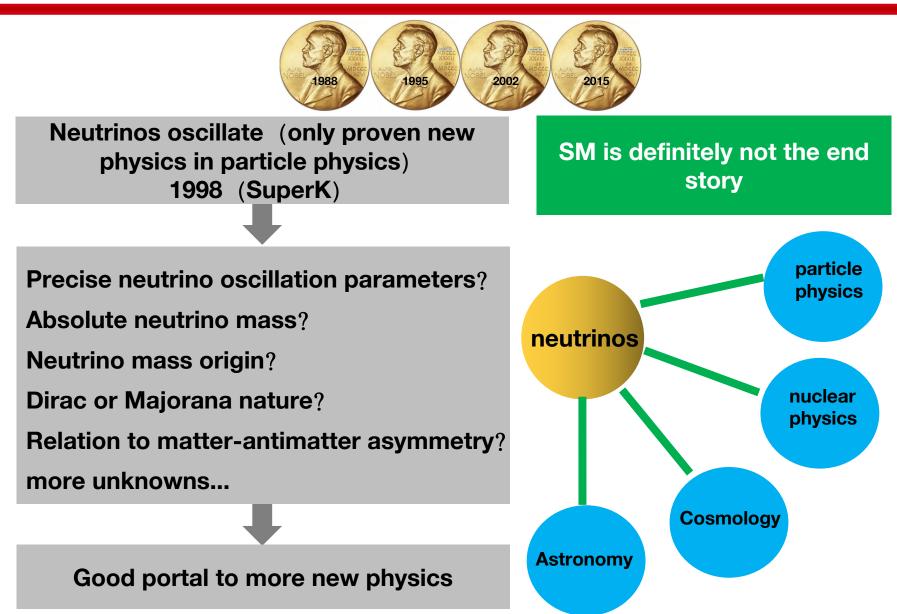
Numerical results

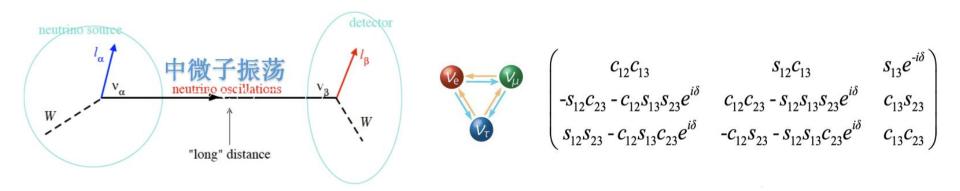

Constraints of minimal Type-I seesaw from current and future $0v2\beta$ experiments


2

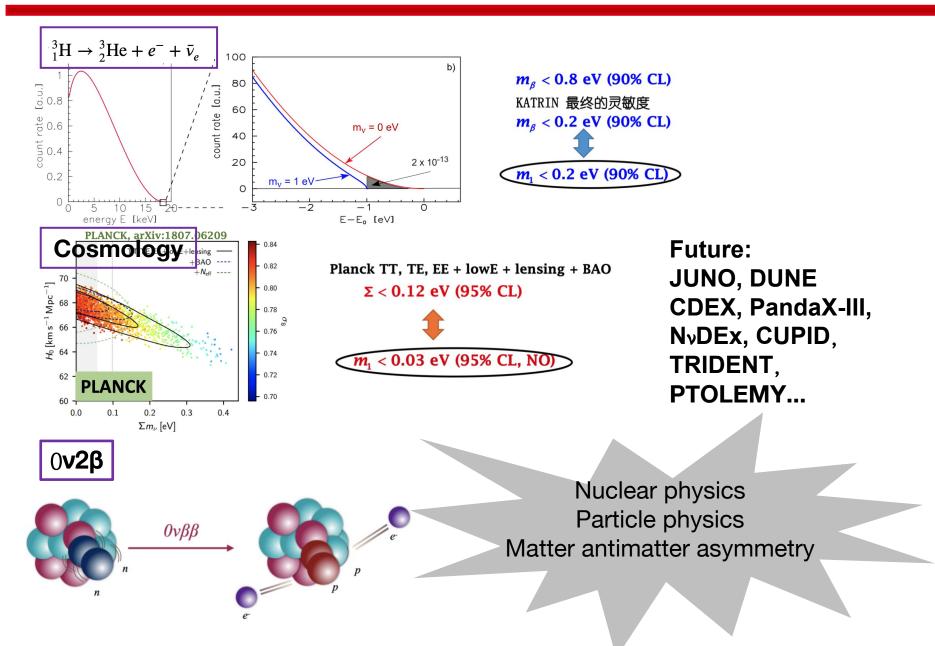

IMF

Conclusions


Known basics



About neutrinos



Precise measurement era

	I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, e						
相对精度		NuFIT 5.2	正质量顺序		? 倒质量顺序 ($\Delta \chi^2 = 6.4$)		
(1 <i>σ</i> /bf)			最佳拟合 $\pm 1\sigma$	3σ 范围	最佳拟合 $\pm 1\sigma$	3σ 范围	
2%	\checkmark	θ_{12} /°	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	
2%	\checkmark	θ_{23} /°	$42.2^{+1.1}_{-0.9}$	39.7 → 51.0	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$	Not sensitive to absolute neutrino
1%	\checkmark	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	8.23 → 8.94	mass
13%	?	δľ	232_{-26}^{+36}	144 → 350	276^{+22}_{-29}	$194 \rightarrow 344$	
3%	~	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	6.82 → 8.03	V
1%	~	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	+2.427 → +2.590	$-2.486^{+0.025}_{-0.028}$	-2.570 → -2.406	

Precise measurement era

Formulas (minimal type-I seesaw)

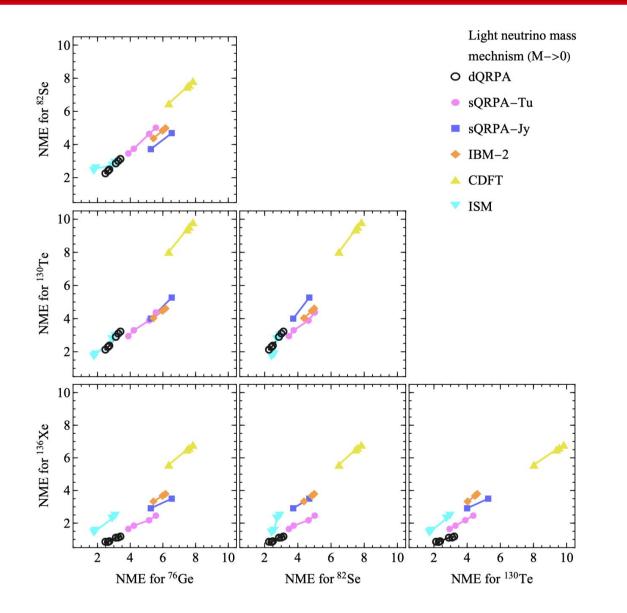
$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} \overline{(\nu_{\text{L}}, N_{\text{R}}^{c})} \begin{pmatrix} 0 & M_{\text{D}} \\ M_{\text{D}}^{\text{T}} & M_{\text{R}} \end{pmatrix} \begin{pmatrix} \nu_{\text{L}}^{c} \\ N_{\text{R}} \end{pmatrix} + \text{h.c.}$$

$$1/T_{1/2}^{0\nu} = G|M_{0\nu}(0) \cdot m_{\text{eff}}|^{2}$$

$$|m_{\text{eff}}| = |m_{\text{eff}}^{\nu}| - |m_{\text{eff}}^{\nu}|f_{\beta}(M_{2}) + R_{e1}^{2}e^{2i\delta_{1}4}M_{1}[f_{\beta}(M_{1}) - f_{\beta}(M_{2})]|$$

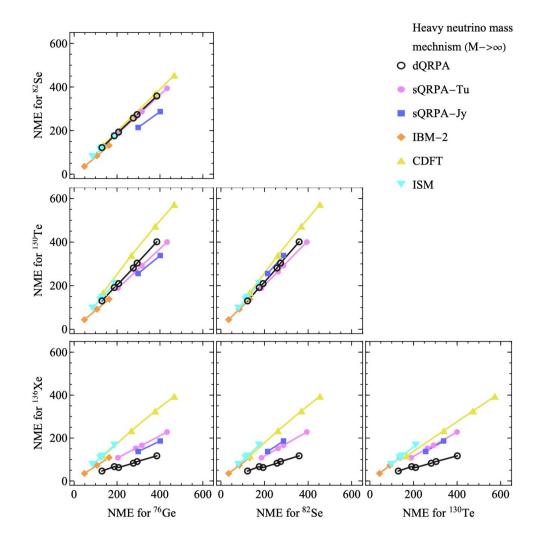
$$f_{\beta}(M_{N}) = M_{0\nu}(M_{N})/M_{0\nu}(0) \text{ Mass dependent nuclear matrix element (NME)}$$

$$\int_{0}^{1} \frac{1}{10^{4}} \frac{0^{\nu\beta\beta} \text{ decay limit (90\% CL), snallest NME}}{10^{4}} \prod_{\substack{n=0\\ 10^{4}} \frac{1}{10^{4}} \frac{1}{10^{4}} \frac{1}{10^{4}} \prod_{\substack{n=0\\ 10^{4}} \frac{1}{10^{4}} \frac{1}{10^{4}} \frac{$$

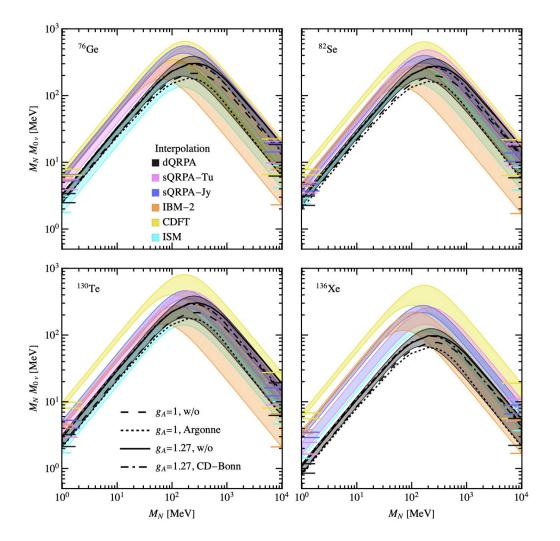

NME of light neutrinos

	g_A	src	dQRPA 74	sQRPA-Tu 75	sQRPA-Jy 77	IBM-2 87	CDFT 80	ISM [81]
	1.27	w/o	3.27	-	-	-	7.61	1
		Argonne	3.12	5.157	-	5.98	7.48	2.89
		CD-Bonn	3.40	5.571	6.54	6.16	7.84	3.07
76 Ge		Miller-Spencer	-	-	-	5.42	6.36	-
	1.00	w/o	2.64	-	-	-	-	-
		Argonne	2.48	3.886	-	-	-	1.77
		CD-Bonn	2.72	4.221	5.26	-		1.88
82 Se	1.27	w/o	3.01	-	2-	-	7.60	-
		Argonne	2.86	4.642	-	4.84	7.48	2.73
		CD-Bonn	3.13	5.018	4.69	4.99	7.83	2.90
		Miller-Spencer	-	-	-	4.37	6.48	-
	1.00	w/o	2.41	-	-	-	-8	-
		Argonne	2.26	3.460	-	-		2.41
		CD-Bonn	2.49	3.746	3.73	-		2.56
$^{130}\mathrm{Te}$	1.27	w/o	3.10				9.55	
		Argonne	2.90	3.888		4.47	9.38	2.76
		CD-Bonn	3.22	4.373	5.27	4.61	9.82	2.96
		Miller-Spencer	-	-	-	4.03	8.03	
	1.00	w/o	2.29					
		Argonne	2.13	2.945	-	-	-	1.72
		CD-Bonn	2.37	3.297	4.00	-	-	1.84
136 Xe	1.27	w/o	1.12	-	-	-	6.62	2.0
		Argonne	1.11	2.177		3.67	6.51	2.28
		CD-Bonn	1.18	2.460	3.50	3.79	6.80	2.45
		Miller-Spencer	-	-	-	3.33	5.58	
	1.00	w/o	0.85					
		Argonne	0.86	1.643	-	-	- 7	1.42
		CD-Bonn	0.89	1.847	2.91	-	- 1	1.53

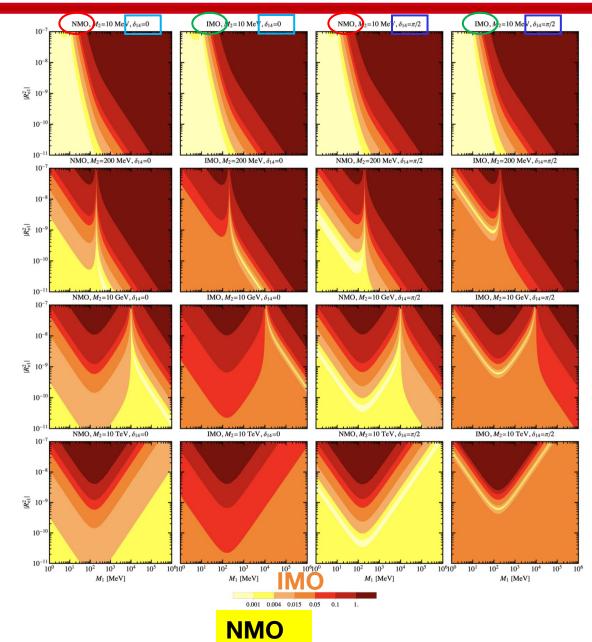
NME of heavy neutrinos


	g_A	src	dQRPA 74	sQRPA-Tu 75	sQRPA-Jy 77	IBM-2 87	CDFT 80	ISM [81]
	1.27	w/o	385.4				466.8	
		Argonne	187.3	316		107	267	130
		CD-Bonn	293.7	433	401.3	163	378.1	188
$^{76}\mathrm{Ge}$		Miller-Spencer				48.1	135.7	
	1.00	w/o	275.9					
		Argonne	129.7	204				86
		CD-Bonn	207.2	287	298.3			122
82 Se	1.27	w/o	358.7				454	
		Argonne	175.9	287		84.4	261.4	121
		CD-Bonn	273.6	394	287.1	132	369	175
		Miller-Spencer				35.6	132.7	
	1.00	w/o	257.4					
		Argonne	122.1	186	-	-	-	80
		CD-Bonn	193.4	262	214.3	-		113
¹³⁰ Te	1.27	w/o	401.1				573	
		Argonne	191.4	292		92	339.2	146
		CD-Bonn	303.5	400	338.3	138	472.8	210
		Miller-Spencer				44	168.5	
	1.00	w/o	281.2					
		Argonne	130.2	189	-	-	_	97
		CD-Bonn	209.5	264	255.7	-	- 0	136
136 Xe	1.27	w/o	117.1				394.5	
		Argonne	66.9	166		72.8	234.3	116
		CD-Bonn	90.5	228	186.3	109	326.2	167
		Miller-Spencer	-	-	-	35.1	116.3	
	1.00	w/o	82.7					
		Argonne	46.3	108	-	-	-	77
		CD-Bonn	62.8	152	137.3	-	-	108

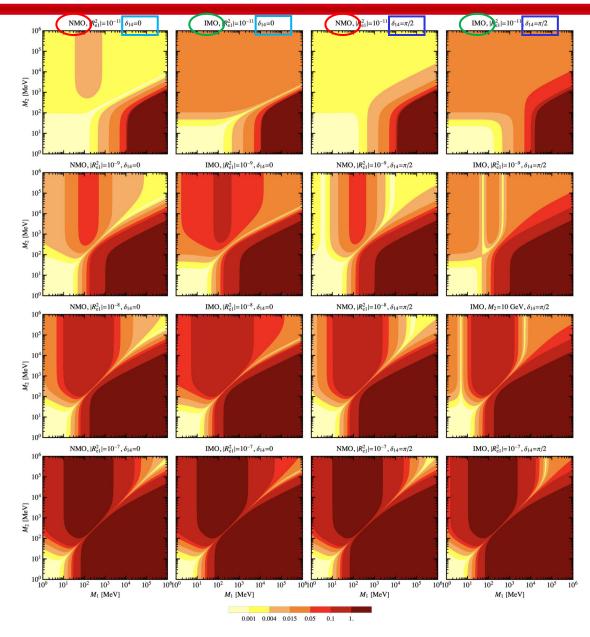
NME of light neutrinos


- CDFT biggest
- ISM/dQRPA smallest
- different NME
 ratios between
 different isotopes

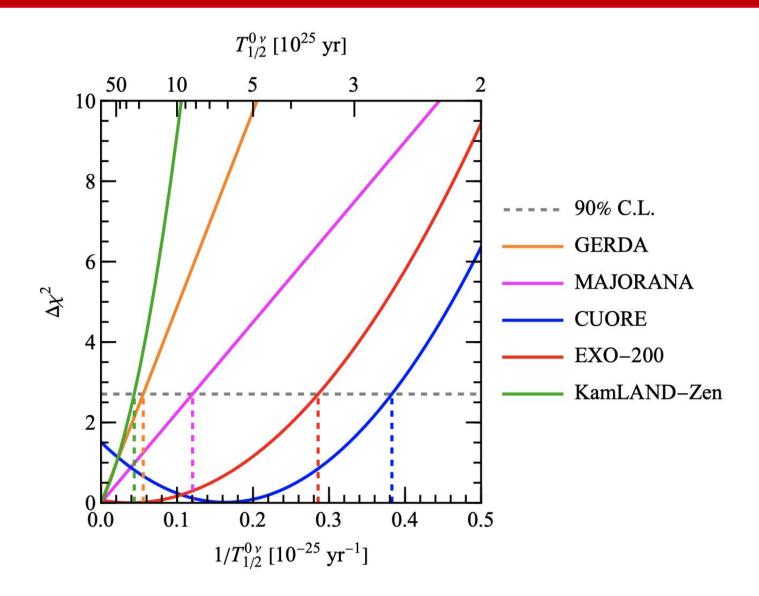
NME of heavy neutrinos


- CDFT biggest
- IBM-2 smallest
- different NME
 ratios between
 different isotopes

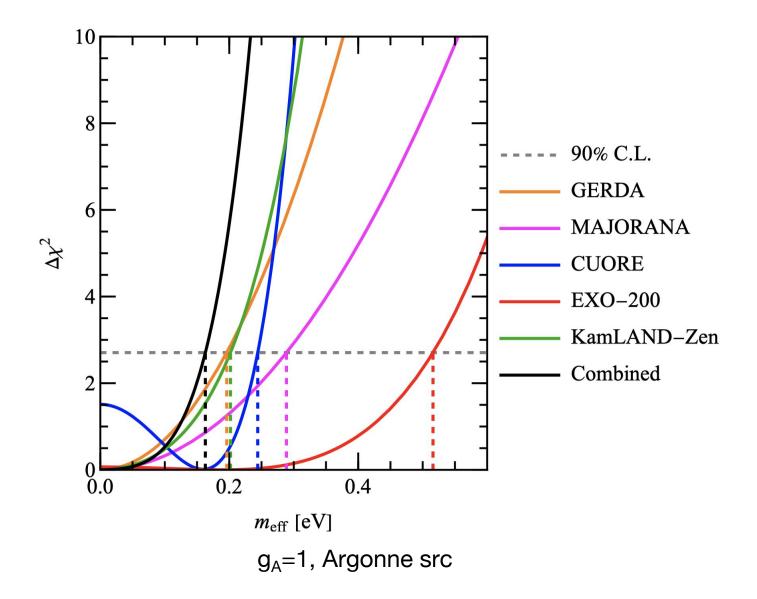
Mass-dependent NME

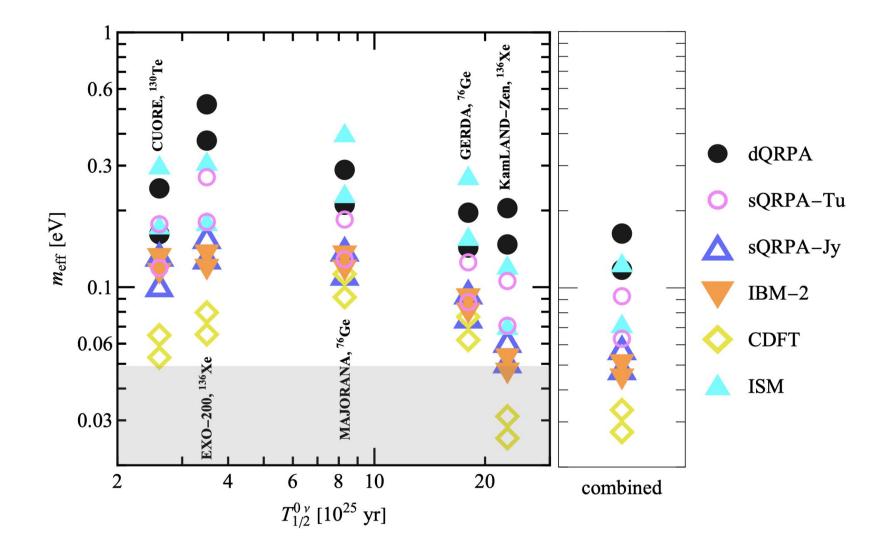

- dQRPA: Numerical calculation
- > Others: interpolation with two extreme values $M_{0\nu}(m_j) = \frac{m_p m_e}{\langle p^2 \rangle + m_j^2} M_{\rm H}$
- dQRPA: agrees with ISM for light neutrinos and tends to be consistent with CDFT for heavy neutrinos
- In light neutrino mass the NME from dQRPA model is smaller than that of the IBM-2 model, and in heavy neutrino mass the reverse applies.

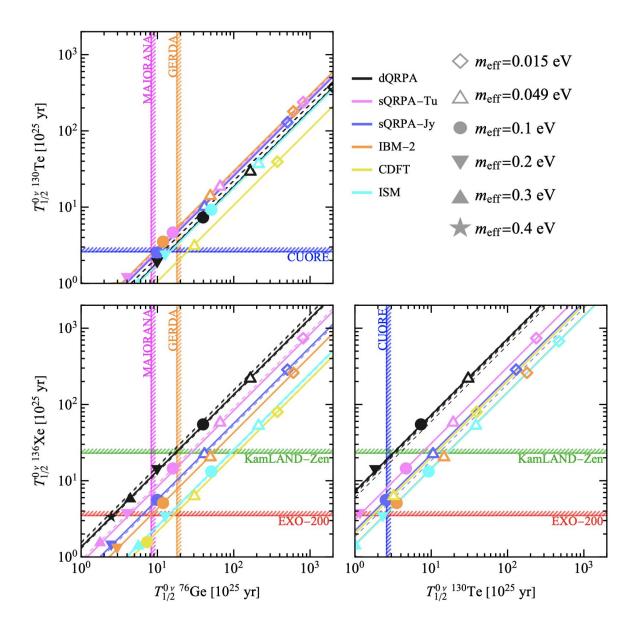
Parameter space of m_{eff}



- \succ g_A=1, Argonne src
- Some parameter space can be very easily/hardly excluded by current/future 0v2β experiments
- The NMO/IMO can be very different and δ₁₄ matters

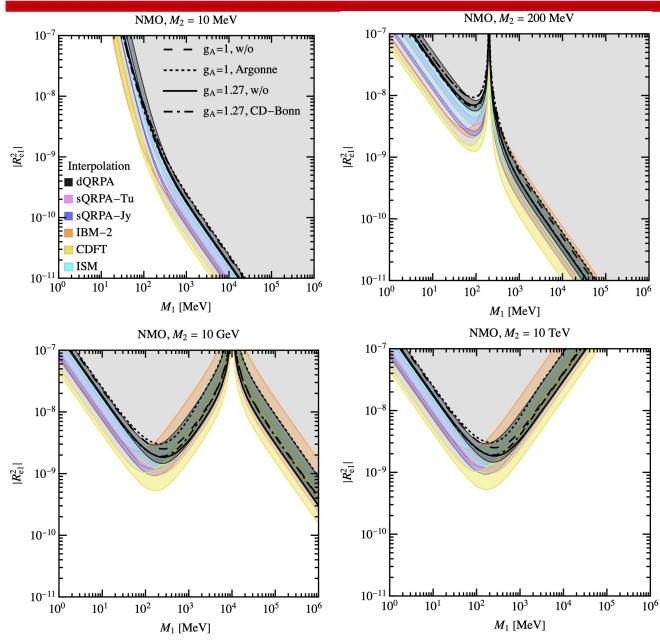

Parameter space of m_{eff}


$\Delta \chi^2$ functions of inverse half–life


$\Delta \chi^2$ functions of m_{eff}

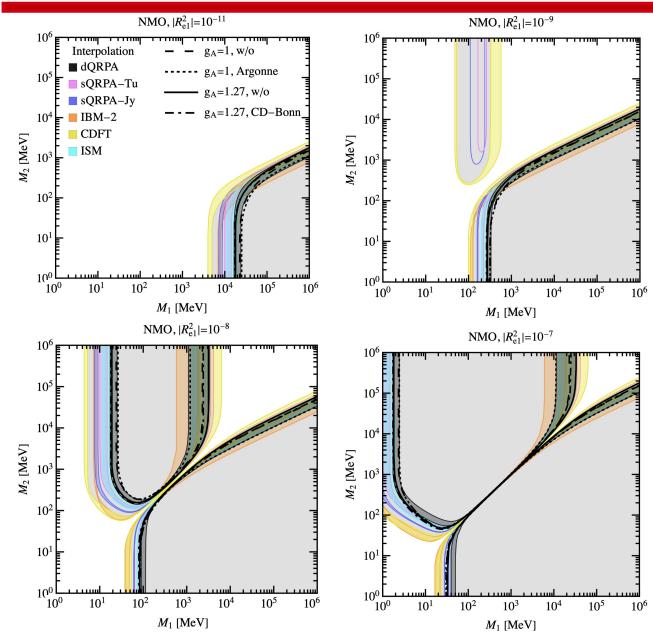
The upper limit of m_{eff}

Half-life relations of different isotopes

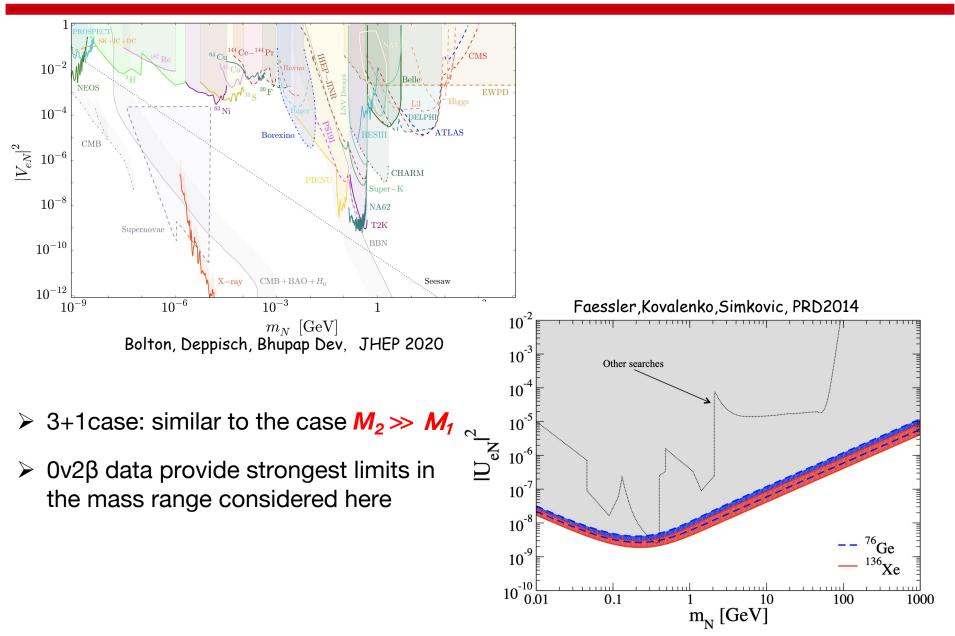


g_A =1.27, CD-bonn src

0v2β half life


- m_{eff} value
- NME value

Current limits $(M_1 \& |R_{e1}|^2)$


- > 3σ C.L
- Gray regions: excluded regions in the case of CDFT model
- Different choices of parameters and models are scanned (not as Gaussian)
- Both the 0v2βdecay and oscillation data are used
- The IMO case is similar
- The peak shape

Current limits (M₁ & M₂)

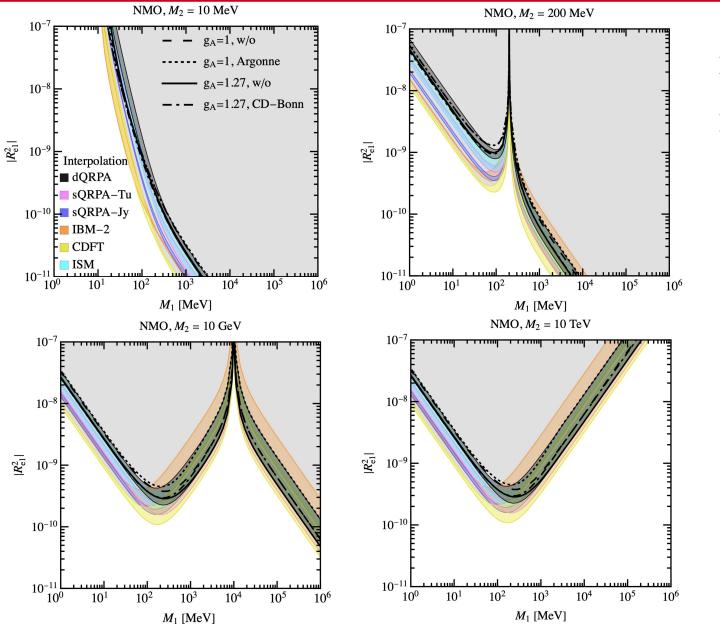
- The IMO case is similar
- The NME hierarchy changes with neutrino mass

Constraints from other probes

Future sensitivities

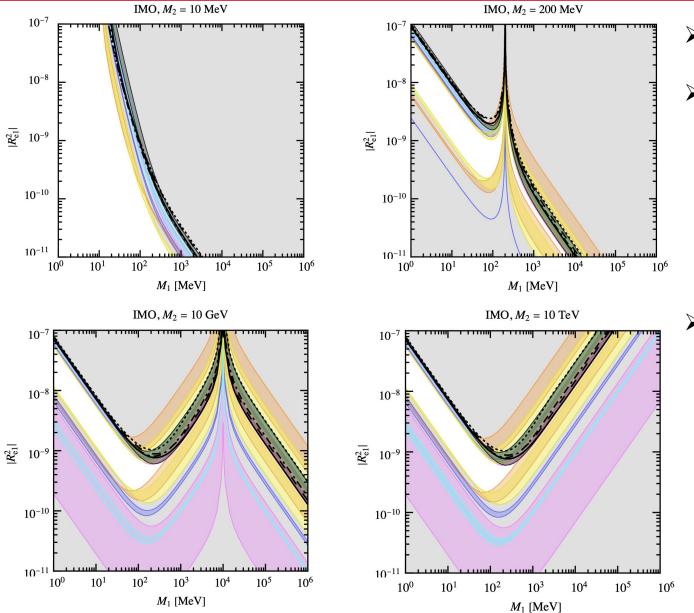
$$\Delta \chi_{ij}^2(m_{\rm eff}, (M_{0\nu})_{\alpha j}; m_{\rm eff}^{\rm True}, (M_{0\nu})_{\alpha i}^{\rm True}) = 2\sum_{\alpha} (N_{\alpha j} - N_{\alpha i}^{\rm True} + N_{\alpha i}^{\rm True} \ln \frac{N_{\alpha i}^{\rm True}}{N_{\alpha j}})$$

Assumed number events
$$\begin{aligned} N_{\alpha i}^{\text{True}} &= B_{\alpha i} + S_{\alpha i}(m_{\text{eff}}^{\text{True}}, (M_{0\nu})_{\alpha i}^{\text{True}}) \\ N_{\alpha j} &= B_{\alpha j} + S_{\alpha j}(m_{\text{eff}}, M_{\alpha j}) \end{aligned}$$


Assuming no positive 0v2β signal is observed, Leading to sensitivities independent of true NME model

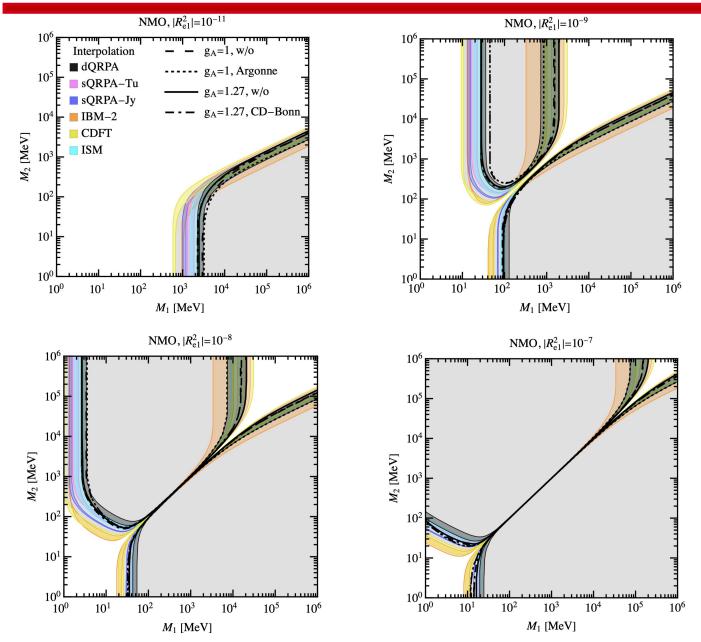
$$S_{\alpha i}(m_{\text{eff}}, M_{\alpha i}) = \text{In} 2 \cdot N_A \cdot \varepsilon_\alpha \cdot (T_{1/2}^{0\nu})_{\alpha i}^{-1} \cdot T/(1 \text{ yr})$$

 $B_{\alpha} = b_{\alpha} \cdot \varepsilon_{\alpha} \cdot T/(1 \text{ yr})$ T=10 yr

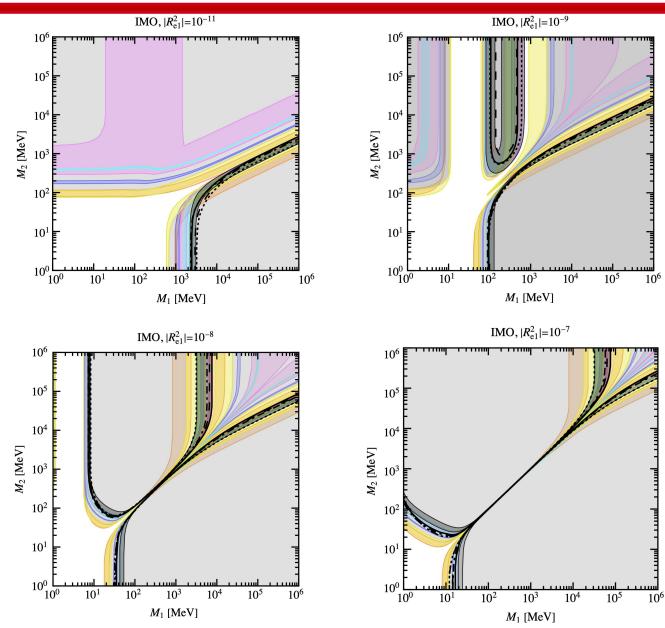

Experiment	Isotope	$\varepsilon \; [{ m mol} \cdot \; { m yr}]$	$b \text{ [events/(mol \cdot yr)]}$
LEGEND-1000	⁷⁶ Ge	8736	$4.9 \cdot 10^{-6}$
SuperNEMO	82 Se	185	$5.4 \cdot 10^{-3}$
SNO+II	$^{130}\mathrm{Te}$	8521	$5.7 \cdot 10^{-3}$
nEXO	$^{136}\mathrm{Xe}$	13700	$4.0 \cdot 10^{-5}$

Future sensitivities $(M_1 \& |R_{e1}|^2)$

- The NMO case
- More parameter space can be tested compared the current experiments


Future sensitivities $(M_1 \& |R_{e1}|^2)$

- The IMO case
- Much more parameter space are expected to exclude than NMO case due to zero positive 0v2β signal assumed


By assuming enough positive 0v2β signal, possible to discriminate NME calculations and more parameter space can be excluded in the NMO case

Future sensitivities ($M_1 \& M_2$)

The NMO case

Future sensitivities ($M_1 \& M_2$)

➤ The IMO case

The wide pink region in the upper left panel: mainly different δ₁₄ values

- Comparison of mass dependent NMEs in different nuclear models
- Derivation of limits and sensitivities on the parameter space of minimal type-I seesaw from current and future 0v2β experiments
- Highlight of the entanglements between new physics exploration and NME calculation
- Possible discrimination of different NME calculations in this framework is on-going.

Thank you for your attention!